ORIGINAL PAPER

Structure and localisation of drug binding sites on neurotransmitter transporters

Aina W. Ravna · Ingebrigt Sylte · Svein G. Dahl

Received: 14 November 2008 / Accepted: 28 January 2009 / Published online: 24 February 2009 © Springer-Verlag 2009

Abstract The dopamine (DAT), serotontin (SERT) and noradrenalin (NET) transporters are molecular targets for different classes of psychotropic drugs. The crystal structure of Aquifex aeolicus LeuTAa was used as a template for molecular modeling of DAT, SERT and NET, and two putative drug binding sites (pocket 1 and 2) in each transporter were identified. Cocaine was docked into binding pocket 1 of DAT, corresponding to the leucine binding site in LeuT_{Aa}, which involved transmembrane helices (TMHs) 1, 3, 6 and 8. Clomipramine was docked into binding pocket 2 of DAT, involving TMHs 1, 3, 6, 10 and 11, and extracellular loops 4 and 6, corresponding to the clomipramine binding site in a crystal structure of a LeuT_{Aa}-clomipramine complex. The structures of the proposed cocaine- and tricyclic antidepressant-binding sites may be of particular interest for the design of novel DAT interacting ligands.

Keywords Neurotransmitter · Transporter protein · Binding site · Dopamine · Noradrenalin · Serotonin

Introduction

The dopamine transporter (DAT), serotonin transporter (SERT), and noradrenalin transporter (NET) are molecular targets for psychotropic drugs acting in the brain. DAT, SERT and NET regulate monoamine concentrations at neuronal synapses by carrying monoamines across neuronal

A. W. Ravna · I. Sylte · S. G. Dahl (⊠)
Department of Pharmacology, Institute of Medical Biology,
Faculty of Medicine, University of Tromsø,
9037 Tromsø, Norway
e-mail: svein.dahl@uit.no

membranes into presynaptic nerve cells, using an inwardly directed sodium gradient as an energy source.

The dopaminergic system in the brain includes the mesolimbic-mesocortical pathway, which is involved in emotion- and drug-induced reward systems. This reward system, which is linked to drug abuse, is activated when a person receives positive reinforcement for certain behaviours, which can be both natural rewards and artificial rewards such as addictive drugs [1]. When stimulants such as cocaine bind to DAT, the dopamine concentration is elevated, resulting in a "reward". Although the rewarding properties of cocaine are assumed to be due largely to its inhibition of DAT on terminals of mesolimbic-mesocortical dopaminergic neurons [2], SERT and NET inhibition also contribute to cocaine reward and cocaine aversion reactions [3, 4].

Both the serotonergic and noradrenergic neurons in the brain are associated with mood. Based on the observation that antidepressant drugs such as tricyclic antidepressants (TCA) and monoamine oxidase inhibitors (MAOI) facilitate monoaminergic transmission, the monoamine theory of depression, proposing that depression results from functionally deficient transmission of serotonin and noradrenalin in the central nervous system (CNS), was postulated in 1965 [5]. Although newer and more complex theories indicating that mood disorders are associated with impairment of structural plasticity in the CNS are currently replacing the monoamine theory of depression [6], the monoamine theory still remains a good basis for understanding the mechanism of action of antidepressant drugs. Modern antidepressants selectively inhibit serotonin- or noradrenalin-reuptake into presynaptic neurons. The class of antidepressant drugs termed selective serotonin reuptake inhibitors (SSRIs) elevates the concentration of serotonin at serotonergic synapses by binding to SERT, while selective noradrenalin

reuptake inhibitors (NARI) such as reboxetine elevate noradrenalin concentrations at noradrenergic synapses by binding to NET.

Structural information about DAT, SERT and NET transporters and their drug interactions is important for understanding their molecular mechanisms of action, and provide useful tools for new drug discovery. Cocaine and SSRIs share similar molecular mechanisms of action, although cocaine is a highly addictive drug and SSRIs are therapeutic drugs prescribed for the treatment of depression. Investigation of the molecular interactions of cocaine may aid in the development of compounds that block the binding of cocaine to DAT without inhibiting dopamine reuptake. Such compounds may have potential value in the treatment of cocaine addiction. Investigating the molecular interactions of SSRIs may be useful in the design of novel antidepressants with fewer side effects than existing ones.

Cocaine has similar binding affinities for DAT, SERT and NET, indicating that these transporters have a common core area for cocaine binding. Binding studies have demonstrated that SSRIs are from 300 to 3,500 times more selective for SERT over NET, and generally have low affinities for DAT [7]. Both cocaine and the SSRI S-citalopram block neurotransmitter reuptake competitively. However, while cocaine is a non-selective reuptake inhibitor, S-citalopram is a selective SERT inhibitor [8].

While no X-ray crystal structures of mammalian human DAT, SERT or NET have been reported, several molecular modelling studies on these transporters have been performed in the last decade [9-19]. A major advance in the monoamine transporter modelling field occurred in 2005 when the Aquifex aeolicus LeuTAa crystal structure, with leucine bound within the protein core, was published [20]. LeuT_{Aa} is a bacterial homologue of DAT, SERT and NET, and may be assumed to provide a valid template for molecular models of these transporters. The sequence identity between LeuTAa and monoamine transporters is $\sim 20\%$ [10]. In this study, we present models of DAT, SERT and NET based on the Aquifex aeolicus LeuTAa crystal structure. The electrostatic potential surfaces (EPS) were calculated, and two putative binding sites in each transporter have been identified. Cocaine and clomipramine were docked into the DAT model, and the results were compared with experimental data [21-33].

Computational methods

The SERT, DAT and NET models were constructed using the LeuT_{Aa} crystal structure (pdbcode 2a65) [20] as a template, and ICM software version 3.4-4 [34] was used for homology modelling. ICM performs homology modelling by constructing the model from a few core sections defined by the average of C_{α} atom positions in the conserved regions. Loops are searched for by matching them with regard to sequence similarity and sterical interactions with the surroundings of the model, within several thousand high quality three dimensional (3D) protein structures. Maps around loops are calculated and the loops scored based on their relative energies, selecting the best fitting one. An amino acid sequence alignment [10] of all known prokaryotic and eukaryotic neurotransmitter:sodium symporter (NSS) proteins, including SERT, DAT and NET, based on the LeuT_{Aa} crystal structure, was used as input alignment in the ICM homology modelling module. The alignment used in the modelling procedure is shown in Fig. 1.

The RefineModel macro of ICM, including (1) a Monte Carlo simulation [34] of side chains, (2) five steps of iterative annealing of the backbone structure, and (3) a second Monte Carlo simulation of side chains, was used to globally optimise side-chain positions and anneal the backbones of the SERT, DAT and NET models. Step 1 performs a side-chain conformational analysis using the "MonteCarlo fast" option of the ICM global optimisation procedure for sampling of the conformational space of a molecule [35]. Random movements followed by local energy minimisations, then followed by a complete energy calculation, were performed iteratively. Each iteration was accepted or rejected based on energy and temperature criteria. In step 2, an iterative annealing of the backbone with provided tethers was performed. These tethers are harmonic restraints pulling an atom in the model to a static point in space represented by a corresponding atom in the template. In step 3, a second Monte Carlo side-chain sampling was performed.

The EPS of the SERT, DAT and NET models were calculated with the ICM program, with a potential scale from -10 to +10 kcal mol⁻¹. The stereochemical quality of the SERT, DAT and NET models were checked using the Savs Metaserver for analysing and validating protein structures (http://nihserver.mbi.ucla.edu/SAVS/). Programs run were Procheck [36], What_check [37], and Errat [38], which examine the stereochemical quality of a protein structure by analysing its overall and residue-by-residue geometry.

ICMPocketFinder was used to explore possible drug binding pockets in the models, using a tolerance level of 4.6. Two putative binding sites were identified in each transporter, and, in DAT, cocaine and clomipramine were docked into binding pocket 1 and binding pocket 2, respectively, using the ICM program. Both ligands were first docked interactively into DAT, and poses in best agreement with experimental data were further examined by flexible docking. The resulting poses of cocaine were compared with site-directed mutagenesis data on DAT, Fig. 1 Input alignment for the

ICM homology modelling procedure. Alpha helices in the

LeutAa X-ray crystal structure

X-ray crystal structure are dis-

played as grey arrows

are displayed as *black cylinders*, and beta-sheets in the LeutAa

1157

Leut_Xray 1 Leut_X			
Human_NET 1	LeuT_Xray		
Human_SERT 1 METTPLINSQKQLSACEDGEDCQENGVLQKVVPTPGDKVESQISINGYSAVPSFGAGDDTR LeuT_Xray TMH11 LeuT_Xray 1 LeuT_Xray 3 TITAFLUGTIBUMTISMARKYGAQCHCTPTPALEVLENVERVEXALGOVR REGACVMK FCP			
LeuT_Kray LEUT_K			
LeuT_Xray 1 TMH1 Human_DAT 2 LTSSTLTNPQQFVEAQDETWICKKIDFLISVICFAVDLAWVREPFVLCYKROGGALMUF Human_SET 38 ERNGVQCLLAPPIGAQPETWICKKIDFLISVICFAVDLAWVREPFVLCYKROGGALMUF Human_SET 16 HSIPATTTIVALHOGENETIKKKIDFLISVICFAVDLAWVREPFVLCYKROGGALLE LeuT_Xray 31 TITAFLLVERINEWAGRAVGKAVCHEVICFAVFULCKKROGGALLE Human_DAT 102 YLEPUIAGMUFYWELALGOYRRGAATWK-ECPFRKOVGYAVLLAIVVGF Human_NET 91 YTEPUIAGMUFYWELALGOYRRGAATWK-ECP		1	METTPLNSQKQLSACEDGEDCQENGVLQKVVPTPGDKVESGQISNGYSAVPSPGAGDDTR
Leut_Xray 1 Leut_X	LeuT_Xray		
Human_DAT 42 LTSSTLTNPRQSPVEAQDET# GKKIDPLLSVIGFAVDLANVØREPYLCYKNGGAFLIF Human_SERT 18 ERNOVQCLLAPROGAQRET# GKKIDPLLSVIGFAVDLANVØREPYLCYKNGGAFLIF Human_SERT 11 HITAPLLVALHOGGENTIGKKVOPLLSVIGFAVDLAVVØREPYLCYKNGGAFLIF LeuT_Xray 11 TIMH2 TIL1 TIMH3 LeuT_Xray 43 MITAPLLVGIFEMØRENGAGOWR-CO			
Human_NET 38 ERRGVQCLLAPEDGDAQPETT SKKTIPLISVGFAVDLASVKFFTLCXKKGGAFLIF Human_SET 61 HSTPATTTLVAELHQGENETT SKKTIPLISVGFAVDLASVKFFTLCXKKGGAFLIF LeuT_Xray 61 HSTPATTTLVAELHQGENETT SKKTIPLISVGFAVDLASVKFFTCVGKGGAFLIF Human_DAT 102 YLLPAVIAKPIFVMELALGOFNEGAATVKF.1COFFKGIGVAIDULASIVGF Human_DAT 98 TTEDTIASMETEVMELAGOFNEGAATVKF.1COFFKGIGVAIDULASIVGF Human_SET 103 YVVESKTIGFAIKFLVGLVEPEPP.TFFKGIGVAIDULASIVGF LeuT_Xray 103 YVVESKTIGFAIKFLVGLVEPEPP.TFFKGIGVAIDULASVLGNHKVSKKFTA Human_DST 105 YNVTLANALHYLESSFTDLFWIGLAGVNERSCHANDED-SGOBGGLADPTGTTA Human_NET 115 YNVTLANALHYLESSFTDLFWIGLAGVNERSCHANDET Human_NET 115 YNVTLANALHYLESSFTDLFWIGLGHTSSKNNSPRGCHAFSLOWSVCKTANKKVKTTSSKVWTTAT Human_NET 115 YNTLANALHYLLSSFTDLFERSTSKNNSPRGCHAVKTTSSKVWTTAT Human_NET 114 SEPERGVLHLUGSHGDLOEPRODICTACLUTULISFEKKVMTTSSKNMFT LeuT_Xray 105 FFTURVLOHENSGGAGNULASIGNULTULSFEKKVMTTSSKNMFT Human_DAT 105 FFTURVLOHENSGGAGNULASIGNULTUSFEKKVMTTSSKNWTTSSKVKTTAS LeuT_Xray 106 FFLAVFUVIKVFULSFFTUSKKNSKTGGAGNUKK.1000000000			~
Human_SERT 61 HSIPATTTLVAELHQGENETKGKKVDPLLSVTGYAVDLGNVKEPTYICYGGGGAELLE LeuT_Xray 43 TIMH2 TL1 TMH3 LeuT_Xray 43 TIMH2 TL1 TMH3 LeuT_Xray 43 TIMH2 TL1 TMH3 Human_DAT 102 LICE TMH2 TL1 TMH3 Human_SET 98 YTFPLITAGKPLFYMELALGOYNRGAATWK: C0:	· · · · · · · · · · · · · · · · · · ·		
LeuT_Xray LeuT_Xray TMH2 LII TMH3 LeuT_Xray TMH2 LII TMH3 LeuT_Xray TMH2 LIII TMH3 LeuT_Xray TMH2 TIAFELVGIPLOWIF MUMAD_DAT TO LEUT_ARMPLYVMELALGOPNEGAAGWK-ICP ILCGGYAVILALYVGF LUTLARMPLYVMELALGOPNEGAAGWK-ICP ILCGGYAVILALYVGF LUTLARMPLYVMELALGOPNEGAAGWK-ICP ILCGGYAVILALYVGF LEUT_Xray EL2 LeuT_Xray CI LeuT_Xray TG KFLVSTGUPEGATEFIVGLVFEPPP-T DEDSILRFF HUMAD_NFT T5 YNVTIAMALYLFSSFTLLMIHTOGHTNISPRCDPKULAGGYAVILALYVGF HUMAD_NFT T5 YNVTIAMALYLFSSFTLLMIHTOGHTNISPRCDPKULAGGYUVTTFF HUMAD_NFT T5 YNVTIAMALYLFSSFTLLMIHTOGHTNISPRCDPKULAGGYUVTTFF HUMAD_NFT T5 YNVTIAMALYLFSSFTLLMIHTOGHTNISPRCDPKULAGGYUVTTFF LeuT_Xray TMH4 TMH5 LeuT_Xray TMH4 TMH5 LeuT_Xray TMH4 TMH5 LEUT_Xray TMH4 TMH5 LEUT_Xray TG FTUSTGUPAGHTDGHTDGHTNISPRCDPKULAGGYUVTTFF HUMAD_DAT TAFYFROUHHHESSGIHDGLPGVQLLLCMVVVULYFSIMKGVKT-SGKVVWTTATL HUMAD_SERT T29 PFYTRHVLQHRSKGLDGLGSVGLALCIMLIFTUTYFSIMKGVKT-SGKVVWTTATL HUMAD_DAT T29 PFYTRHVLQHRSKGLDGLGSVGLALCIMLIFTUTYFSIMKGVKT-SGKVVWTTATL HUMAD_DAT T29 PFYTRHVLQHRSKGLDGLGSVGLALCIMLIFTUTYFSIMKGVKT-SGKVVWTTATL HUMAD_DAT T29 PFYTRHVLQHRSKGLDGLGSVGLALCIMLIFTUTYFSIMKGVKT-SGKVVWTTATL HUMAD_DAT T29 PFYTRHVLQHRSKGLDGLGSVGLALCIMLIFTUTYFSIMKGVKT-SGKVVWTATF LeuT_Xray TG FTUSSVNCTNCYRDJUTSSTNCTSFVSGFAVSGLGVMCA-SGKVVWTATF HUMAD_DAT T29 PFYTRHVLQHRSKGLDGLGJSVGLALCIMLIFTUTYFSIMKGVKT-SGKVVWTATF LeuT_Xray TG FTUSSVNCTNCYRDJUTSSTNCTSFVSGFAVSGLGVMCAAGGPYFGSLGOGGY LeuT_Xray TG TH2 LEUT_Xray TMH2 LEUT_YIYNYLYNYLYNYLYNYLYNYLYNYLYNYLYNYL	77		
TMH2 IL1 TMH3 Human_DAT 102 YLLPRVIAGMPLFYMELALGOFNREGAAGVMK-ICP	2013년 1월 2013년 1월 17월 18일	01	HSIPATTTTLVAELHQGERETWGRRVDFLLSVIGYAVDLGNVWRFPYICYQNGGGAFLLP
Leut_Xray 43 TIAFLUVGTPLWNIEMAMGEYGAQGHGTTPAFYLLMENNFAKILGYCMM PUWAI Human_NT 102 YLLPWIAGMUCPYMELALGQYNREGAAGWW. ICP IKUGYGFYYLLSIVYGF Human_SRT 102 YLLPUTAGMULPYMELALGQYNREGAAGWW. ICP IKUGYGFYYLLSIVYGF Human_SRT 102 YLLPUTAGMULPYMELALGQYNREGAAGWW. ICP IFKGIGYAICILAFYLAS LeuT_Xray 103 YWVIESWTLGFAIKFLVGLVEEPPF.T	Leur_Aray		
Human_DAT 102 TLEPWITAGMDLFYMELALGOFNEGAAGWWK-TCPFFKGVGYAVILLALYGF Human_SERT 121 TLFLIIAGMDLFYMELALGOFNEGAAGWK-TCPFFKGVGYAVILLALYGF LeuT_Xray 103 YEVTESATLGFATKELYGLVEGGATWK-TCP	Leur Yrav	43	
Human_NET 98 YTLFLITAGMCLEYNMELALGOYNREGASTWWK-TCFFFKGUGVAVILLALYVGF Human_SERT 121 YTIMAIFGGIPLEYNMELALGOYNREGISINRKTCFFFKGUGVAVILLALYVGF LeuT_Xray 103 YUVIESNTLGFAIKFLVGLV BEPPF			
Human_SERT 121 TIMAIFGGIPLFYMELALGQYHRNGCISIWRKICPIFKGIGYAICIIAFYIAS LeuT_Xray 03 YVYTESHTLGFAIKFEUGLØRDEPPE-T			
LeuT_Xray LeuT_Xray LeuT_Xray 103 YVYIESWTLGFAIKFLVGLV EPPF-T EL2 LeuT_Xray 103 YVYIESWTLGFAIKFLVGLV EPPF-T LET2 LeuT_Xray 115 FNNVIIAALHYLFSSFTLLFWIHCNNSNNSPNCDDKLLNGSVLGNHTYSKYKYFTA Human_SERT 155 YNNVIIAASHYLFSSFTLLFWTCGTNWSPNCDDKLLNGSVLGNHTYKYKYFTA Human_SERT 175 YNNTIMANALYYLISSFTLUEFUTGGTNVFNSPNCDDKLLNGSVLGNHTYKYKYFTA Human_DAT 214 AFYERGVLHHSSGIHDIGLPGWQTACLUVIVLYELTMFINVSILRGISKGERFAKIAMPT Human_NET 211 AFYERGVLHHSSGIHDIGLPGWQLLCLMVVIVLYELKKGVKT-SGKVVWTTATL Human_SERT 229 EFYTRHVLQIHRSGIHDIGLPGWQLLCLMVVIVLYFELKKGVKT-SGKVVWTTATL Human_SERT 239 LFYTRHVLQIHRSGLQDLGGISWQLALCIMLIFYUFSKGKQVAT-SGKVVWTATF Human_DAT 244 EUT_Xray 196 LFILAVFLVINVELLEFNONTAADGLNFLWTPDFKLEASVMIDAATQUFFILSLGGGA Human_NET 256 TTYASYVKNDDIVLSGLTAATLAFKAEVLLGOFFLGTAVUIDAADGIFFILGAGGGV Human_SERT 256 TTYASYVKNDDIVLSGLTAATLAFKAEVLLGGSFAFVAGAFA-QKAV-FYULAAADIFFILGAGGV Human_SERT 256 LGUT_Xray 256 TTYASYVKNDDIVLSGLTAATLAFKAEVLLGGSSGLAVASFLGVVNAAADAADIFFILGAGGV Human_SERT 236 LAFSSNNFFNNCYDALVTSVNCMTSFVSGFVFSFLGVAA-CHENVIDAAADIFFILGAGGV Human_SERT 236 LAFSSNNFFNNCYDALVTSVNCMTSFVSGFVFSFLGVAA-HEHKVNEDVARD- HUMAN_SERT 244 LLAFSSNNFFNNCYDALVTSVNCMTSFVSGFVFFSLGVAA-HEHKVNEDVARD- HUMAN_SERT 242 CUT_Xray 256 TTYASYVKAAJVFFSAHLVMFLNKSLDEMDFMACTIGVVFFGLTALADDFVLKR- HUMAN_SERT 242 CUT_Xray 256 TTYASYVKTAAIVFFSAHLVMFLNKSLDEMDFMACTIGVVFFGLTALIADDFVLKR- HUMAN_DAT 256 SDIQQMCGFPELVKLVKVKLVSGLVTSVVVCMTSFVSGFVFFGLLGVAA-HEHKVNEDVARD- HUMAN_DAT 252 LEUT_Xray 255 SDIQQMCGFPELVKLVKVVSTTFFAIFFELLFILMITTGIDSAMGMGSVTTGLIBEPLUKRA 254 HUMAN_DAT 255 SDIQQMGFPELVKRUKVSSELEVVVVSTTFFAIFFULMITGIDSAMGMSSVTGLIBEPLOULAR-H HUMAN_DAT 255 SDIQQMGFPELVKRUKVSSELEVVVSTANFFNIGGVVFFGLAADDFVVKSIGVFFYGVDF HUMAN_DAT 255 SDIQQMGFPELVKRUKVSSELEVVVSTAFFPHIGAYFFYGVDF HUMAN_DAT 255 SDIQQMGFPELVKRUKVSSELEVVVSTAFFPHIGAYFFPHIGAYFFYGVDF HUMAN_DAT 255 SDIQQMGFPELVKRUKVSSELEVVVSTAFFPHIGAYFFYDYDYTENAAKGWCI HUMAN_SERT 252 CRVKEMLGSPGWFWRICWVSSELEFLYVVSTIFFPHIGAYFFYDYDYTENAAKGWCI HUMAN_DAT 255 25 SDIQQMGFPELVKRUKVSSEALEFLYVVSTIFFPHIGAYFFPHIGAYFFYDYDYTENAAGGWCI HUMAN_DAT 255 25 25 25 25 25 25 25			
LeuT_Xray 103 YVYTESNTLGFAIKFLVGLVEPPP-TDDDJLRFF Human_DAT 155 FNNVIIAMALHYLFSSFTLELEVIHCNNSWNSPNCSDAHPGD-SSGDSSGLNPTGTTA Human_NET 151 YNNVIIAMALYYLISSFTDQLEVTSCKNSWNTONCNTNYFSEDNITWYKKFTA Human_NET 175 YNNTIMAALYYLISSFTDQLEVTSCKNSWNTONCNTYFSEDNITWYKKFTA LeuT_Xray 139 KEFLYSYIGVFKGDEPILKPSLFAYTVFLTMFINVSILTRGISKGTEFFAKIAMPT Human_DAT 214 AEYYERGVLHLOSGHODLOPPRWQLTACLVLVTULYFSLWKGVKT-SGKVVWTATK Human_SET 214 EYEYERGVLHLHOSGHODLOPQPRWQLTACLVLVTULYFSLWKGVKT-SGKVVWVTATF Human_SET 216 EFYERGVLHHESSGHDELOPQOLLCLVLVTULYFSLWKGVKT-SGKVVWVTATF LeuT_Xray 196 EFILAVFEVILVEVELETPNGTAADGINFLWTPDFEKKDFVTOVAKGUGFFTELSLGKGA Human_DAT 273 FYVULTALLEGVTLPGANGINFLWTPDFKKDFADVUDAATGOFFELGGKGGV Human_DAT 273 FYVULTALLEGVTLPCANGINFLHIPTYKKEATWIDAATGOFFELGGKGGV Human_DAT 273 FYVULTALLEGVTLP	1000		
Leur_Xray 103 YVYTESHTLCFAIKELVGL/EEPPF-TDEDSILEF Human_DAT 155 FYNVIIAMALHYLSSFTULEWIHCNNSWNSPNC3DAHPGD-SSGDSSGLNDTGTTAA Human_DAT 155 YNVIIAMALYYLSSFTULEWIHCNNSWNSPNC3DAHPGD-SSGDSSGLNDTGTTAA Human_SERT 175 YNNTIAMALYYLISSFTDOLEWTSCKNSWNTONCTNYFSEDNITWTLHSTSPA LeuT_Xray 175 YNNTIAMALYYLISSFTDOLEWTSCKNSWNTONCTNYFSED			EL2
Human_NET 151 151 Y NYT IANSLYYLFSSFTLNLFWTDCGHTWNSPNCTDFKLLNGSVLGNHTKYSKYKFTA Human_SERT 175 Y NYT HAMALYYL ISSFTDLEWTSCKNSWNTGCTNYFSEDNITWTLHFSPA LeuT_Xray 139 KEFLYSYIGVFKGDEPILKSEFAYTVFLITMFINVSILIRGISKGIERFAKIAMPT Human_NET 214 AFYFERGVLHLHGSKGIDDLGPFWQLLCLMVVVIULYFSLWKGVKT-SGKVWUTATH Human_NET 213 AFYFERGVLHLHESSIHDICLFQWQLLLCLMVVVIULYFSLWKGVKT-SGKVWUTATH Human_NET 214 AFYFERGVLHLHESSIHDICLFQWQLLCLMVVVIULYFSLWKGVKT-SGKVWUTATH LeuT_Xray 196 LFILAVFLVIRVFLLETPNTFAADGLNFLWTPDFEKIKDPGWIAAVQIFFTESLGFGA Human_DAT 273 PYVULTALLRGYTLFCAIDGIRAYLSVDFYRLCEASWIDAATQVCFSLGGFGG Human_NET 270 PYVLFVLLVAGATEPCANRGULFYLKPNQKLLGGSISIPAVAFFGVANAJAKAG Human_SERT 286 TITYASTVRKDQDIVLSGLTAATLNKAEVILGGSISIPAVAFFGVANAJAKAG Human_DAT 296 ILAFSSVNKFDNNCYQDALUTSSINCITFSVSGFVFSLGYMKHWNIEDVARE- Human_DAT 226 ILAFASSNKFDNNCYQDALUTSSINCITFSVSGFVFSLGYMKHWNIEDVARE- Human_SERT 313 AFNEGT TLEPAIATLPSSAWAVFT MALLAGUSSINGMON ITALLGOWN AAAAFGVANDA Human_DAT 386 GCCLFTIYPEAIATLPSSAWAVFT MALLAGUSSMOKMAN ITALAGUFSVCGLIDEPHWAKA LeuT_Xray 313 AFNEGT TLEPAIATLPSAMAW	LeuT_Xray	103	
Human_SERT 175 YYNTYMANALYYLISSFTDQLFWTSCKNSWNTGNCTNYFSEDNITWTLHSTSFA LeuT_Xray 139 KEFLSVIGVPKGDEPILKPSLFAYTWRLTTWFINVSLITREISGTERAKIAMPT Human_DAT 214 AFYFERGVLHLHQSHGIDDLGPRWQLTACUVUYULYFSLWKGVKT-SGKVWNTATM Human_NET 11 AFYFERGVLHLHQSHGIDDLGPRWQLTACUVUYULYFSLWKGVKT-SGKVWNTATM Human_SERT 229 EFFTRHVLOIHKSKGLQDLGGISWQLALCIMUTYULYFSLWKGVKT-SGKVWNTATF LeuT_Xray 196 FFLAVFLVTVFLUTHSKGLQDLGGISWQLALCIMUTYDFELKKOVGT-SGKVWNTATF LeuT_Xray 196 FFLAVFLVTVFLUTHSVTVFLUTHYDFEKIKDSOVGTEAVQOIFFTLSLGFGA Human_DAT 270 PYVULTALLRGVTLPCANGUNALHDPYRLKEATWNTDAATOTFFSLGAVGGV LeuT_Xray 196 FFLAVFLVURGTLPCANGUNALHDPYRLKEATWNTDAATOTFFSLGAVGGV LeuT_Xray 218 PYTILSVLVRGATUPCANGUNALHDPYRLKEATWNTDAAQOIFFTSLGAVGGV LeuT_Xray 216 ITTVASVRKDQDIVLSGITAATTNEKAFVLIGGSISIPAVAFFGVANAVAIAKAG	Human_DAT	155	FYNVIIAWALHYLFSSFTTELPWIHCNNSWNSPNCSDAHPGD-SSGDSSGLNDTFGTTPA
LeuT_Xray LeuT_Xray 139 KEFLYSYIGVPKGDEPILKPSLFAYIVFLITMFINVSILIRGISKGIEPAKIAMPT Human_DAT 214 AFYFERGVLHLHQSHGIDDLOPPRWQLTACL/UVIVLYFSLWKGVKT-SGKVWWITATM Human_NET 211 AEFYERGVLHLHSSGIHDIGLGQWQLLCLMVVVVLYFSLWKGVKT-SGKVWWITATM Human_NET 212 EFYTHVUQIHRSKGLQDLGGISWQLACCIVLIYFSIKKGVKT-SGKVWWITATM LeuT_Xray LeuT_Xray EL3 TMH6 LeuT_Xray 196 LFILAVFLVIRVFLLETPNGTAADGUNFLWTPDFEKLKDFGVWIAANGQIFFTLSLGFGA Human_DAT 273 PYVUTALLRGVTPCASNGINAVLHDFYKLEASTVWIDAATQUCSSLGVGGGV Human_SERT 288 PYIILSVLUVRGATLPCGANGGVLFYLKPNWQKLLETGVWIDAAQIFFSLGPGFGV LeuT_Xray 256 TITYASYVKKDQDIVLSGITAATLNEKAEVILGGISIPAAVAFGVANNAAKAG Human_DAT 292 LIAFSSYNKFTNNCYDALLTSSINCITSFVSGFAIFSILGYMAQKHSVPIGDVAKD- Human_DAT 292 LIAFSSYNKFTNNCYDALLTSSINCITSFVSGFAIFSILGYMAQKHSVPIGDVAKD- Human_SERT 344 LLAFASYNKFDNNCYDALLTSSINCITSFVSGFAIFSILGYMA EMRNEDVSEVAKDA LeuT_Xray TMH9 LeuT_Xray TMH9 CMH4 Luan_SERT 402 GPGLIFIIYPEAIATLPLSSMAVVFFVLLLALGLDSMGGMEAVTGLADFVKRAK LeuT_Xray 479 TMH9 LeuT_Xray 427 WEEINRGGIKVPFIALLESCTNGGIVVFTLLGLDSFAGGESVTAVLDEFPHVWAKR LeuT_Xray 565 SDDIQQMTGRPSLYWKLDGTVFTLLALFCTKGGIVVFTLLDFFAGTSSIFAVUFFGUTELIFFRIFGADKA Human_DAT 445 RELFTGVTFSTLLALFCTKGGIVVFTLDFFAGTSSIFAVUFFGUTELIFFRIFGADKA Human_DAT 445 RELFTGVTFSTLLALFCTKGGIVVFTLDFFAGTSSIFAVUFFYWMAKR LeuT_Xray 565 ATSSMAWFIYAXYKFCSLPGSFKEKLAYAIAPENDFWRGTIGVFFGDAKLIFFNUFFYGVFFFUHAALGAFSVKFGVDFF Human_DAT 562 ALSSMUVFIYAYKFCSLPGSFKEKLAYAIAPENDFWRGYVFYWFKINGFFFUHANVGGUFFHWWAKR LeuT_Xray 575 CDVKEMLGGIKVPFTYULAKLSPCFLLPVVVSINTFFPHYGAYIFPDMAALGWVIF HUMAN_NET 562 ALSSMUVFIYAYKFCSLPGSFKEKLAYAIAPENDRSVFFFUHASTIFFYGYIFPHANVGGUFFHWWAKR 575 CDV	Human_NET	151	YYNVIIAWSLYYLFSSFTLNLPWTDCGHTWNSPNCTDPKLLNGSVLGNHTKYSKYKFTPA
TMH 4 TMH 5 LeuT_Xray 139 KEFLYSYIGVPKGDEPILKPSLKPSLYTVLITMFINVSILTRGISKGIERFARLAMPT 1139 KEFLYSYIGVPKGDEPILKPSLKPSLYTTTTELWENVSILTRGISKGIERFARLAMPT 113 AEYPEROVLHLAGSIGDLOGPRØQLTACLVLIVLYFSLWKGVKT-SGKVWUTATTEL Human_DET 211 AEYPEROVLHLESSGIHDICLPOWQLACLVVVVLLYFSLWKGVKT-SGKVWUTATTEL LeuT_Xray 196 EFITAVLQIHRSKGLQDLGGISWQLALCIMLIFTVIYFSLWKGVKT-SGKVWUTATTE LeuT_Xray 196 IFILAVFUVIRVFLETPMOTADGINFLWTPDFEKLKDFGWUTARAGGY SLOPGGW Human_DAT 270 PYVUTALLROVTPCASNGINAVLHJDFYRLKEATVWUTADATQIFSLGAGGW UATSY TMH 6 LEUT_Xray 256 TITYASVVRGATUPCASNGINAVLHJDFYRLKEATVWIDATQIFSLGAGGW Human_DAT 29 LAFSSYNKFDNNCYRDAITTSINSLTSFSSGFVVFSFLGYMACHRSVRAG Human_DAT 266 TITYASVVRFDNCYRDALTSINCTTSFVSGFVFFLGYMACHRSVRAG Human_SET 344 LAFSSYNKFDNNCYRDALTSINCTTSFVSGFVFFUCGYMACHRSVRAG HUMASI	Human_SERT	175	YYNTIMAWALYYLISSFTDQLPWTSCKNSWNTGNCTNYFSED NITWTLHSTSPA
LeuT_Xray 139 REFLYSYTGVPKGDEPILKPSLFAYTVFLTTMFINVSLIKGISKGTERFAKTAMPT Human_DAT 214 AEYPERGVLHLHQSHGIDDLGPPRWQLTACLVLVTVLLYFSLWKGVKT-SGKVVWITATL Human_NET 214 AEYPERGVLHLHESSGTHDIGLGPWQLLALCINLIFTVIYFSIWKGVKT-SGKVVWITATL Human_SET 219 EEFYTRHVLQIHRSKGLQDLGGISWQLALCINLIFTVIYFSIWKGVKT-SGKVVWVTATF LeuT_Xray 196 LFILAVFLVIRVFLETPNGTAADGLMFLWTPDFEKLKDGVUTAAVGQIFFTLSLGFGA Human_DAT 273 PYVVLTALLRGVTLPGAINGINAVLHDPYRLKEATVWIDAATQIFFSLSGFGGV Human_NET 270 PYVLVLVHOVTLPGAINGINAVLHDPYRLKEATVWIDAAAQIFFSLSGFGGV Human_SERT 288 PYILLSVLLVRGATLPGANRGULFYLKENWOKLLETOVWIDAAAQIFFSLGFGGV LeuT_Xray 256 ITTYASYNKFDNNCYDALTTSINSTSSGFVFYSFLGYMAOKHSVPIGOVAKD- Human_NET 326 LIAFSSVNKFDNNCYDALTTSINSTSSGFVFYFVGYMAGKHSVPIGOVAKD- Human_SERT 344 LLAFASYNKFDNNCYDALTSSINCITSFVSGFVIFTVLGYMA EMRNEDVSSVAKDA LeuT_Xray 313 AFNLGFTLPPAIFSQTAGGFFLGFLWFLFLAFGGITSSIAIMOPMIAFLEDELKLS Human_SERT 342 LLAFASYNKFNNCYDALTSSINCITSFVSGFVIFTVLUGYMA EMRNEDVSSVAKDA LeuT_Xray 313 AFNLGFTLPPAIFSQTAGGFFLGFLWFLFFAGITSSIAIMOPMIAFLEDELKLS Human_SERT 342 LLAFASYNKFNNCYDAUTTSVNCMTSFVSGFVIFTVLUGYMA-	LeuT_Xray		
Human_DAT 214 AEYFERGVLHLHQSHGIDDLGPPRWQLTACLVLVIVLYFSLWKGVKT-SGKVVWITATM Human_NET 211 AEYFERGVLHLHQSHGIDDLGPRWQLTACLVLVIVLYFSLWKGVKT-SGKVVWITATM Human_NET 212 EEFYTHHVLQIHRSKGLQDLGGISWQLLCLMVVIVLYFSLWKGVKT-SGKVVWITATM LeuT_Xray 196 EFILAVFLVIRVFL_ETPNGTAADGLMFLWTPDFEKLKDFCVMIAATQUCFSLGVGFGV Human_DAT 273 PYVVLTALLLRGVTLPGAIDGIRAYLSVDFYRLCEASVWIDAATQUCFSLGVGFGV Human_NET 270 PYVVLTALLLRGVTLPGAIDGIRAYLSVDFYRLCEASVWIDAATQUCFSLGVGFGV Human_NET 270 PYVVLTALLLRGVTLPCANRGULFYLKENWQKILDETCVWIDAAQUFFSLGAGFGV Human_DAT 273 PYVVLFVLLVHOVTPCANRGULFYLKENWQKILDETCVWIDAAQUFFSLGAGFGV LeuT_Xray 256 ITTYASYVKKODDIVLSGLTAATLNEKAEVILGGSISIPAAVAFFGVANAVATAKAG Human_DAT 329 LIAFASYNKFDNNCYRDALTSSINCITSFVSGFAIFSICGWAOKHSVFIGDVAKD- Human_NET 313 AFNLGFITLPATFSQTAGGTFLGFLWFFLLFAGTSSIATMOPMIAFLEDELKLS Human_SERT 346 CPGIIFITVPATATUFLSSAWAVFFIMLLTIGIDSSMGMESVTGLDDFQLKR-H Human_NET 313 AFNLGFITVPATATVFFSAHLVWFVMLLALGLDSSMGGMESVTGLDDFQLKR-H Human_NET 366 GGLVFITYPEANWASTFFAITFFULTGLDSTFAGCEGVTAVLMEAIGVSNFYGVQF Human_NET 402 GPSLLFITVAEAIATVFFSAHLVWFVMLLALGLDSSMGGMESVTGLDDFQV			
Human_NET 211 AEFYERGULHLHESSGIHDIGLPQWQLLLCLMVVVIVLYFSLWKGVKT-SGKVVWTTATL Human_SERT 229 EFFYRHVLQHREKGLQDLGGISWQLALCHMUFVIVLYFSLWKGVKT-SGKVVWTTATL LeuT_Xray 196 LFILAVFLVIRVFLETPNGTADGLMFLMTPDFEKLKDGVWTANCGIFFISLGVGGG Human_NET 196 LFILAVFLVIRVFLETPNGTADGLMFLMTPDFEKLKDGVWTANCGIFFISLGVGGV Human_NET 196 LFILAVFLVIRVFLETPNGTADGLMFLMTPDFEKLKDGVWTANCGIFFISLGVGGV Human_NET 270 PYFVLFVLLVGVTPGANGINAYLHIDFYRLCEASVWIDAATQIFFSLGVGGV LeuT_Xray 256 ITTYASYVKKDQDIVLSGLTAATINEKAEVLGGSISIPAAVAFFGVANAVAIAKAG Human_NET 326 LIAFASYNKFDNNCYRDALTTSINSUTSSGFAIFSILGYMAQHNSVEIGDVAED- Human_NET 326 LIAFASYNKFDNNCYRDALTTSINSUTSSGFAIFSILGYMAUSHKNEDVAKDA LeuT_Xray ILAFASYNKFDNNCYRDALTTSINSUTSSGFAIFSILGYMAUSHKNEDVAKDA Human_SERT 344 LLAFASYNKFNNNCYQDALTTSINSUTSSGFAIFSILGYMAUSHKNEDVSEVAKDA LeuT_Xray ILAFASYNKFDNNCYRDALTSSINCITSFVSGFAIFSILGYMAUSHKNEDVSEVAKDA LeuT_Xray IMMAN_SERT 346 GPGLIFIIPAEAIATLPLSSAWAVFHIMLLLGIDSSMCGMEAVITGLADEFQULKK-H Human_SERT 342 GESLFITYAEAIANPASTFFAIIFFLMIITLGLDSSMCGMEAVITGLDADEFQULKK-H Human_SERT 422 GESLFITYAEAIANPASTFFAIIFFLMILTLGLDSSMCGMEAVITGLADEFQULKK-H Human_SERT 422 RKLFTGGTFSTFLLAFCTKGGIYVTLLDHFAAGTSILFAVLMEAIGVSWFYGUPF			
Human_SERT 229 EEFYTRHVLQIHRSKGLQDLGGISWQLALCIMLIFTVIYFSIWKGVKT-SGKVVWVTATF LeuT_Xray 196 LFILAVFLVIRVFLLETPNGTAADGLNFLWTPDFEKLKDPGVWIAAVGQIFFTLSLGFGA Human_DAT 273 PYVULTALLERGVTLPCAIDGIRAYLSVDFYRLCERSVWIDAATQVCSLGGFGGA Human_DAT 273 PYVULTALLERGVTLPCAIDGIRAYLHDPYRLCERSVWIDAATQIFFSLGFGGA Human_DAT 273 PYVULTALLERGVTLPCAIDGIRAYLHDPYRLKERTWWIDAAAQIFFSLGFGFGA LeuT_Xray 288 PYIILSVLLVRGATLPGANGULFSLKERTWWIDAAAQIFFSLGFGFGA LeuT_Xray 256 ITTYASYVRKDQDIVLSGLTAATLNEKAEVILGGSISIPAAVAFFGVANAVAIAKAG Human_DAT 329 LIAFSSNKFFINNCYRDAITTSINSITSFSSGFVVFSFLGYMAQKHSVPIGDVARD Human_SERT 344 LLAFASYNKFFNNCYDALTTSINSITSFSSGFVVFSFLGYMA HERKVNIEDVATE- Human_DAT 386 GFGLIF IIYPEAIATLESSSTWAVYF YMLLALGDSSMGEMESVITGLADDFQULRK-H Human_SERT 402 GPSLLFITYAEAIANDASTFFAIIFFLULITLGDSSMGGMESVITGLADDFQULRK-H Human_SERT 402 GPSLLFITYAEAIANDASTFFAIIFFLULITLDBSAMGEMESVITGLADFQVQLKK-H Human_SERT 445 RELFTLFVLATFLLEFCTNGGIYVFTULDHFAAGTSILFQVLIKAAIGAAFYGVQOFF Human_DAT 445 RELFTLFVLTAFLLEFCTNGGIYVFTULDHFAAGTSILFQVLWAAIGAAFYGVQOFF Human_SERT 422 REFTVLAVVITCFFGSLVLTFGGAYVVKLLEEYATG			
Leut_Xray EL3 TMH6 Leut_Xray 196 LFILAVFLVTRVFLETPNGTAADGLNFLWTPDFEKLKDFCWTIAAVQ0FFTLSLGFGA Human_DAT 273 PYVVLTALLLRGVTLP····GAIDGIRAYLSVDFYRLCEASVWIDAATQVCFSLGVGFGV Human_NET 270 PYVVLTALLLRGVTLP····GAINGINAUHIDPYRLKEATVWIDAATQVFFSLGVGFGV Human_SET 288 PYILSVLUNGATLP····GAINGINAUHIDPYRLKEATVWIDAAQIFFSLGPGFGV Leut_Xray 266 ITTYASYVRKDQDIVLSGLTAATLNEKAEVILGGSISIPAAVAFFGVANAVAIAKAG··· Human_DAT 329 LIAFSSWNKFTNNCYRDALTSSINCTSFVSGFAIFSILGYMA··OKHSVPIGDVARG··· Human_DAT 326 LIAFASWNKFNNNCYRDALTSSINCTSFVSGFAIFSILGYMA··GKHSVPIGDVARD- Human_SERT 344 LLAFASYNKFNNNCYRDALTSSINCTSFVSGFAIFSILGYMA··HEHKVNIEDVARE- Human_SERT 344 LLAFASYNKFNNNCYQDALVTSVVNCMTSFVSGFVIFVLGYMA··EMRNEDVSEVAKDA LeuT_Xray 313 AFNIGFTTLPAIFSQTAGGTFLEPWFFLLFFAGLTSSIAIMOPMIAFLEDELKL····S Human_NET 383 GAGLVFILVPEAISTLSGSTFWAVVFFVMLLALGLDSSMGGMEAVTGLADDQVLKR·H Human_SERT 402 GPSILFTTYAEAIANMPASTFAITFEIMLITLGUDSTFAGLEOVTTAVLDEFPHVWAKR LeuT_Xray 369 RKHAVLWTAAIVFFSAHLVWFL··NKSLDEMDFWAGTGLVFCITELIFFN IFGAKA Human_NET 442 RKEFTFOVTSTFLLAFCTINGGIYVFLLDHFAAGTSILFAVLMEAIGAWYFYGVQGQF Huma			
EL3 TMH 6 Leut_Xray 196 LFILAVFLVIRVFLETPNGTADGLMFLWTPDFEK_KDDFCWTLAVGQIFFTLSLGVGFQ Human_DAT 273 PYVVLTALLRGVTLPGAIGIRAYLSUDFYR.LCEASWIDATQUFSLGVGFG. Human_NRT 270 PYFVLFVLLVHGVTLP		229	EEFYTRHVLQIHRSKGLQDLGGISWQLALCIMLIFTVIYFSIWKGVKT-SGKVVWVTATF
Leut_Xray 196 LFILAVFLVTRVFLLETPNGTAADGLAFLWTPDFERLKDPGWTAAVGQTFFTSLGFGA Human_DAT 273 PYVVLTALLERGVTLP····CAIDGIRAYLSVDPYRLCESSVWIDAATQUFFSLGAGEGW Human_NET 270 PYVVLFVLUKUGVTLP····CAIDGIRAYLSVDPYRLCESSVWIDAATQUFFSLGAGEGW Human_SERT 288 PYILSVLUKRGATLP····CAWRGVLFYLKPNWQKLLETGVWIDAAAQIFFSLGAGEGW Leut_Xray 256 ITTYASYVRKDQDIVLSGLTAATLNEKAEVILGGSISIPAAVAFFGVANAVAIAKAG··· Human_DAT 329 LLAFSSNNKFTNNCYRDAITTSINSTSFSGEVVFSFLGYMA··OKHSVPIGDVAKD- Human_NET 326 LIAFASYNKKDNNCYRDAITTSINSTSFSGEVVFSFLGYMA··OKHSVPIGDVAKD- Human_NET 344 LLAFASYNKFNNNCYQDALTTSVNCTSFVSGFVIFTVLGYMA··EHRKVNIEDVATE- Human_NET 346 GPGLIFTIYPEAIATLPLSSAWAVVFFIMLLTLGIDSAMGGMESVITGLIDEFOLLHR-H Human_NET 386 GPGLIFTIYPEAIATLPLSSAWAVVFFIMLLTLGIDSAMGGMESVITGLIDEFOLLHR-H Human_SERT 402 GPSLIFTYAEAIAMPASTFFAITFFLMLITLGIDSAMGGMESVITGLIDEFOLHR-H Human_SERT 403 GPSLIFTYAEAIAMPASTFFAITFFLWITTGGIYVFTLDHFFGLTELIFFWIPGGVFGLTELIFFWIPGWAKR LeuT_Xray TMH 9 TMH 10 LeuT_Xray TMH 9 TMH 10 LeuT_Xray 427 WEEINRGGIIKVPRIYUYWKITFAEAUXLVVVSIVFFPPHYQAUFFGVAUVAVSWFGVQVGRF Human_NET 4	LeuT_Xray		
Human_DAT 273 PYVVLTALLLRGVTLPGAIDGIRAYLSVDFYRLCEASUWIDAATQVCFSLGVGFGV Human_NET 270 PYFVLFVLUHGVTLPGANGINAYLHDFYRLKEATUWIDAATQIFFSLGAGFGV Human_SET 288 PYILLSVLURGATLPGANGULFYLKPNWOKLLETGVWIDAAAQIFFSLGAGFGV LeuT_Xray 256 ITTYASYVRKDQDIVLSGLTAATLNEKAEVILGGSISIPAAVAFGVANAVAIAKAG Human_DAT 329 LIAFASYNKFDNNCYRDAIVTSINSLTSSGFVYFSFLGYMAQKHSVPIDDVAKD- Human_NET 326 LIAFASYNKFDNNCYRDAIVTSINSLTSSGFVYFSFLGYMAQKHSVPIDDVAKD- Human_SERT 344 LLAFASYNKFDNNCYQDALVTSVVNCMTSFVSGFVIFTVLGYMAEMRNEDVSEVAKDA LeuT_Xray 313 AFNLGFITLPAIFSQTAGGTFLGFLWFFLLFFAGLTSSIAIMQPMIAFLEDELKLS Human_NET 336 GCCLIFIIYPEAIATLPLSSAWAVVFFVMLLALGIDSSMGGMESVITGLDDFQVLKR-H Human_NET 336 GCCLIFIIYPEAIATLSLSGAFWAVVFFVMLLALGIDSSMGGMESVITGLDDFQVLKR-H Human_NET 369 RHAVLWTAAIVFFSAHLVMFLNKSLDEMDFWAGTIGVVFFGLTELIIFFNIFGADKA Human_NET 442 RLFTGVTFSTELLALFCITKGGIYVFTLDFFAAGFSILFAVLMEAIGVSMFYGVGQF Human_NET 422 REFVLAVVITCFFGSLVTITFGGAVVKKLEEYATGPAVLTVALIEAIDSAWFYGVAFYGVRGV Lut_Xray 369 RHAVLWTAAIVFFSAHLVMFLNKSLDEMDFWAGTSILFAVLMEAIGVSMFYGURGF Human_DAT 422 REFFULAVVITCFFGSLVTITFGGAVVKKLEEYATGPAVLTV	LOUT YMAN	106	
Human_NET 270 PYFVLFVLLVHGVTLPGASNGINAYLHIDFYRLKEATVWIDAATQIFFSLGAGFGV Human_SERT 288 PYILLSVLLVRGATLPGAWRGVLFYLKPNWQKLLETGVWIDAAAQIFFSLGAGFGV LeuT_Xray 256 TITYASYVRKDQDIVLSGLTAATLNEKAEVILGGSISIFPAAVAFGVANAVAIAKAG Human_DAT 329 LIAFSSYNKFDNCYRDALVTSINSISFSSGFVVFSFLGYMAQKHSVPIDUVAKD- Human_SERT 326 LIAFASYNKFDNNCYRDALVTSINSISFSSGFVVFSFLGYMAQKHSVPIDUVAKD- Human_SERT 344 LIAFASYNKFDNNCYRDALTSSINCITSFVSGFAIFSILGYMAQKHSVPIDUVAKD- LeuT_Xray 313 AFNLGFITLPAIFSQTAGGTFLGFLWFFLFFAGITSSILGYMA EMRNEDVSEVAKDA LeuT_Xray 313 AFNLGFITLPAIFSQTAGGTFLGFLWFFLLFFAGITSSILMQPMIAFLEDELKLS Human_DAT 366 GFGLIFITYPAFATATLPLSSAWAVVFFMLLTLGIDSAMGGMESVITGLIDEFQLEHR-H Human_NET 383 GAGLVFILYPEAISTLSGSTFWAVVFFMLLTLGIDSTAGLEGVITAVLDEFPHVWAKR LeuT_Xray			
Human_SERT 288 PYIILSVLLVRGATLP····GAWRGVLFYLKPNWQKLLETGVWTDAAAQIFFSLGPGFGV LeuT_Xray 256 IITYASYVRKDQDIVLSGTAATLNEKAEVILGGSTSIPAAVAFGVANAVATAKAG··· Human_DAT 329 LIAFSSYNKFTNNCYRDALTSSINCITSFVSGFVFSFLGYMA··QKHSVPIGDVAKD- Human_NET 326 LIAFSSYNKFTNNCYRDALTSSINCITSFVSGFVFSFLGYMA··QKHSVPIGDVAKD- Human_SERT 344 LLAFASYNKFDNNCYRDALTSSINCITSFVSGFVIFFVLGYMA··BENKNDEDVATE- Human_SERT 313 AFNLGFITLPAIFSQTAGGTFLGFLWFFLFFAGLTSSIAIMQPMIAFLEDELKL···S Human_DAT 386 GPGLIFITYPEAIATLPLSSAWAVVFFVMLLAGLDSSMGGMESVITGLIDEFQLLRF.H Human_NET 383 GAGLVFILYPEAISTLSGSTFWAVVFFVMLLAGLDSSMGGMEAVITGLADDFQVLKR.H Human_SERT 402 GPSLLFITYAEAIANMPASTFFAIIFFLMLITLGLDSTFAGLEGVITAVLDEFPHVWAKR LeuT_Xray 369 RKHAVLWTAAIVEFSAHLVMFL··NKSLDEMDFWAGTIGVVFFGLTELIIFFWIFGADKA Human_SERT 442 RKLFFGVTFSTFLLALFCITKGGIYVTLLDHFAAGTSILFGVIEAGVSWFYGVGQF Human_SERT 422 WEEINRGGIIKVPRIYYVMRYITFAFLALFVVVKLLEEYATOPAVLTVALIEAVAVSWFYGVQGF Human_SERT 427 WEEINRGGIIKVPRIYYVMRYITFAFLALFVVVSITFRPHVAAYIFPDWANALGWVI Human_DAT 505 SDDIQQMMGFRPCLYWRLCWKF9SAFLLFVVVSITFRPHVAAYIFPDWANALGWVI Human_SERT 522 SNDIQQMMGFRPCLYWRLCWKF9SAFLLFVVVSIV	_		
Leut_Xray TMH7 EL4 Leut_Xray 256 IITYASYURKDQDIVLSGITAATLNEKAEVILGGSISIPAAVAFGVANAVATAKAG Human_DAT 329 LIAFSSYNKFTNNCYRDAIVTSINSLFSSGFVVFSFLGYMAQKHSVFIGUVAKD- Human_NET 326 LIAFSSYNKFTNNCYRDAIVTSINSLFSSGFVVFSFLGYMAQKHSVFIGUVAKD- Human_SERT 344 LLAFASYNKFDNNCYQDALVTSVVNCMTSFVSGFVIFTVLGYMAEMRNEDVSEVAKDA Leut_Xray TMH8 Leut_Xray 313 AFNLGFITLPAIFSQTAGGTFLGFLWFFLLFFAGLTSSIAIMQPMIAFLEDELKLS Human_DAT 386 GPG.IFIIYPEAIATLPLSSAWAVVFFINLLT.GIDSAMGGMESVITGLIDEPQLLHR-H Human_NET 483 GGGLVFILYPEAISTLSGSTFWAVVFFVMLLALGLDSSMGGMEAVITGLADDPQVLKR-H Human_NET 402 GPSLIFITVAAIVFSAHLVMFLNKSLDEMDFWAGTIGVFFGITELIIFFWIFGADKA Human_NET 402 GPSLIFITVAAIVFSAHLVMFLNKSLDEMDFWAGTIGVVFGITELIIFFWIFGADKA Human_NET 402 RKHAVLWTAAIVFFSAHLVMFLNKSLDEMDFWAGTGIGVFGITELIIFFWIFGADKA Human_SERT 462 REFFVLAVVTTCFFGSLVTLTFGGAVVKLLEEYATGPAVLTVALIEAVASWFYGVQGF Human_NET 422 WEEINRGGIIKVPRIYYYMRYITPAFLAVLLVVVXSIVFRPPHYGAYIFPWAANLGVWI Leut_Xray 11 11 Leut_Xray 427 WEEINRGGIIKVPRIYYYMRYITPAFLAVLLVVVXSIVFRPPHYGAYIFPWAANLGVWI	. 2019년 2019년 - 111일 - 111		
Image: Construct of the system of the sys		200	
Leut_Xray 256 TITYASYVRKDQDIVLSGLTAATLNEKAEVILGGSISIPAAVAFFGVANAVATAKAG Human_DAT 329 LIAFSSYNKFTNNCYDDAIVTTSINSLTSFSSGFVFSFLGYMA - QKHSVPIGDVAKD- Human_NET 326 LIAFSSYNKFTNNCYDDALVTSSINCITSFVSGFAIFSILGYMA - QKHSVPIGDVAKD- Human_SERT 344 LLAFASYNKFNNCYQDALVTSVVNCMTSFVSGFVIFFVLGYMA - EMRNEDVSEVAKDA Leut_Xray 313 ĀFNLGFITIPAISQTAGGTFLGFLWFFLFFAGLTSSIAIMQPMIAFLEDELKLS Human_DAT 386 GPGLIFITYPEAIATLPLSSAWAVVFFUMLLALGLDSSMGGMEAVTGLADDFQULKR-H Human_SERT 402 GPSLIFITYAEAIANMPASTFFAIIFFLMIITIGLDSTFAGLEGVITAVLDEFPHVWAKR Leut_Xray 369 RKHAVLWTAAIVFFSAHLVMFLNKSLDEMDFWAGTIGVVFFGLTELIIFFWIFGADKA Human_NET 402 GPSLIFITYAEAIANMPASTFFAIIFFLMIITLGLDSTFAGLEGVITAVLDEFPHVWAKR Leut_Xray 369 RKHAVLWTAAIVFFSAHLVMFLNKSLDEMDFWAGTIGVVFFGLTELIIFFWIFGADKA Human_SERT 402 GPSLIFITYAEAIANMPASTFFAIIFFLMITLGLDSTFAGLEGVITAVLDEFPHVWAR Leut_Xray 369 RKHAVLWTAFLVFFSAHLVMFLNKSLDEMDFWAGTIGVVFFGLTELIFFWIFGADKA Human_DAT 442 RKLFTFGVTFSTFLLALFCITKGGIYVLTLLDFAAGTSILFGVLIEAIGAWFYGVQFF Human_DAT 450 SDDIQQMTGRPSLVWRLCWKVSDCTLTFGGAVVVKLLESYATGAVUTVALIEAVAVSWFYGITQF Leut_Xray 427 WEEINRGGIIKVPRIYYYWRYITAA	Dour-may		TMH7 EI.4
Human_NET 326 LIAFASYNKFDNNCYRDALLTSSINCITSFVSGFAIFSILGYMA - HEHKVNIEDVATE- Human_SERT LeuT_Xray 344 LLAFASYNKFDNNCYQDALVTSVVNCMTSFVSGFVIFTVLGYMA - EMRNEDVSEVAKDA LeuT_Xray 313 ĀFNLGFITLPAIFSQTAGGTFLGFLWFFLLFFAGLTSSIAIMQPMTAFLEDELKLS Human_DAT 386 GPGLIFIIYPEAIATLPLSSAWAVVFFIMLLTLGIDSAMGGMESVITGLIDEFQLLR-H Human_NET 383 GAGLVFILYPEAISTLSGSTFWAVVFFVMLLALGLDSSMGGMEAVITGLADDFQVLKR-H Human_SERT 402 GPSLLFITYAEAIANMPASTFFAIIFFLMLITLGLDSTFAGLEGVITAVLDEFPHVWARR LeuT_Xray 369 RKHAVLWTAAIVFFSAHLVMFL- NKSLDEMDFWAGTIGVVFFGLTELIIFFRIFGADKA Human_DAT 445 RELFTLFIVLATFLLSLFCVTNGGIYVFTLLDHFAAGTSILFGVLTEAIGVAWFYGVGQF Human_NET 442 RKLFTGVVFSTFLLALFCITKGGIYVVTLLDFFAAGTSILFGVLTEAIGVAWFYGVGQF Human_SERT 462 REFTVLAVVITCFFGSLVTLTFGGAVVKLLEYATGPAVLTVALIEAVAVSWFYGTVF LeuT_Xray 427 WEEINRGGIIKVPRIYYVMRYITEAFLAVLVVSIVFFPPHYGAYIFPDWANAUGWGI Human_SERT 505 SDDIQQMMGPRPSLYWRLCWKLVSPCFLLFVVVSIVSIVFFPPHYBANAUGWGI Human_SERT 522 CRDVEMLGFSPGWFWRICWAISELFLFIICSFLMSPPQLRLFQYNPYWSIILGYCI LeuT_Xray 484 IIGLFLFLFLVFLAERRRNHESAGT- Human_DAT 565 ATSSMMVVIYAYYVYKSLSPCSLPGSFREKLAYAIAPEKDRELVDRGEVQFTLRHWLKV-	LeuT_Xray	256	
Human_SERT 344 LLAFASYNKFNNNCYQDALVTSVVNCMTSFVSGFVIFTVLGYMAEMRNEDVSEVAKDA LeuT_Xray 313 AFNLGFITLPAIFSQTAGGTFLGFLWFFLLFFAGLTSSIAIMQPMIAFLEDELKLS Human_DAT 386 GPGLIFIIYPEAIATLPLSSAWAVVFFIMLLTLGIDSAMGGMESVITGLIDEFQLLHR-H Human_NET 383 GAGLVFILYPEAIATLPLSSAWAVVFFIMLLTLGIDSAMGGMEAVITGLADDFQVLKR-H Human_SERT 402 GPSLLFITYAEAIANMPASTFFAIIFFLMLITLGLDSTFAGLEGVITAVLDEFPHVWAKR LeuT_Xray	Human_DAT	329	LIAFSSYNKFTNNCYRDAIVTTSINSLTSFSSGFVVFSFLGYMAQKHSVPIGDVAKD-
LeuT_Xray TMH 8 LeuT_Xray 313 AFNLGFITLPATFSQTAGGTFLGFLWFFLLFFAGLTSSIAIMQPMIAFLEDELKLS Human_DAT 386 GPGLIFIIYPEAIATLPLSSAWAVVFFIMLLTGIDSAMGMESVITGLIDEFQLHR-H Human_NET 383 GAGLVFILYPEAISTLSGSTFWAVVFFVMLLALGLDSSMGGMEAVITGLADDFQVLKR-H Human_SERT 402 GPSLLFITYAEAIANMPASTFFAIIFFLMLITLGLDSTFAGLEGVITAVLDEFPHVWAKR LeuT_Xray 369 RKHAVLWTAAIVFFSAHLVMFL-NKSLDEMDFWAGTIGVVFFGLTELIIFFWIFGADKA Human_DAT 445 RELFTLFIVLATFLLSLFCVTNGGIVVFTLLDHFAAGTSILFGVLIEAIGVAWFYGVGQF Human_SERT 422 RKLFTGVTFSTFLLALFCITKGGIVVLTLLDTFAAGTSILFAVLMBAIGVSWFYGVDRF Human_SERT 422 REFFVLAVVITCFFGSLVTLTFGGAVVVKLLEEYATGPAVLTVALIEAVAVSWFYGTOF LeuT_Xray 11 11 LeuT_Xray 427 WEEINRGGIIKVPRIYYVMRYITPAFLAVLLVVWAREYIPKIMEETHWTVWITRFY Human_DAT 505 SDDIQQMTGQRPSLYWRLCWKLVSPCFLLFVVVVSIVTFRPPHYGAYIFPDWANALGWVI Human_SERT 502 SNDIQQMMGFRPGLYWRLCWKVSPAFLLFVVVVSIVTFRPPHYGAYIFPDWANAUGWGI Human_SERT 502 CRDVKEMLGFSPGWFWRICWVAISPLFLLFIICSFLMSPPQLRLFQVNYPYWSILLGYCI LeuT_Xray 11 11 LeuT_Xray 484 11 11 11 11	Human_NET	326	LIAFASYNKFDNNCYRDALLTSSINCITSFVSGFAIFSILGYMAHEHKVNIEDVATE-
TMH8 LeuT_Xray 313 AFNLGFITLPAIFSQTAGGTFLGFLWFFLLFFAGLTSSIAIMQPMIAFLEDELKL····S Human_DAT 386 GPGLIFIIYPEAIATLPLSSAWAVVFFIMLLTGIDSAMGGMESVITGLIDEFQLLHR·H Human_NET 383 GAGLVFILYPEAISTLSGSTFWAVVFFVMLLALGLDSSMGGMEAVITGLADDFQVLKR·H Human_SERT 402 GPSLLFITYAEAIANMPASTFFAIIFFLMLITLGLDSTFAGLEGVITAVLDEFPHVWAKR LeuT_Xray	Human_SERT	344	LLAFASYNKFNNNCYQDALVTSVVNCMTSFVSGFVIFTVLGYMA EMRNEDVSEVAKDA
LeuT_Xray 313 AFNLGFITLPATFSQTAGGTFLGFLWFFLLFFAGLTSSIAIMQPMIAFLEDELKL····S Human_DAT 386 GPGLIFIIYPEAIATLPLSSAWAVVFFIMLLTLGIDSAMGGMESVITGLIDEFQLLRR-H Human_NET 383 GAGLVFILYPEAISTLSGSTFWAVVFFVMLLALGLDSSMGGMEAVITGLADDFQVLKR-H Human_SERT 402 GPSLLFITYAEAIANMPASTFFAIIFFLMLITLGLDSTFAGLEGVITAVLDEFPHVWAKR LeuT_Xray	LeuT_Xray		
Human_DAT 386 GPGLIFIIYPEAIATLPLSSAWAVVFFIMLLTLGIDSAMGGMESVITGLIDEFQLLHR-H Human_NET 383 GAGLVFILYPEAISTLSGSTFWAVVFFVMLLALGLDSSMGGMEAVITGLADDFQVLKR-H Human_SERT 402 GPSLLFITYAEAIANMPASTFFAIIFFLMLITLGLDSTFAGLEGVITAVLDEFPHVWAKR LeuT_Xray			
Human_NET 383 GAGLVFILYPEAISTLSGSTFWAVVFFVMLLALGLDSSMGGMEAVITGLADDFQVLKR-H Human_SERT 402 GPSLLFITYAEAIANMPASTFFAIIFFLMLITLGLDSTFAGLEGVITAVLDEFPHVWAKR LeuT_Xray 369 RKHAVLWTAAIVFFSAHLVMFLNKSLDEMDFWAGTIGVVFFGLTELIIFFWIFGADKA Human_DAT 445 RELFTLFIVLATFLLSLFCVTNGGIYVFTLLDHFAAGTSILFGVLIEAIGVAWFYGVGQF Human_NET 442 RKLFTFGVTFSTFLLALFCITKGGIYVLTLLDTFAAGTSILFAVLMEAIGVSWFYGVDRF Human_SERT 462 RERFVLAVVITCFFGSLVTLTFGGAVVVKLLEEYATGPAVLTVALIEAVAVSWFYGITQF LeuT_Xray 427 WEEINRGGIIKVPRIYYYVMRYITPAFLAVLLVVWAREYIPKIMEETHWTVWITRFY Human_DAT 505 SDDIQQMTGQRPSLYWRLCWKLVSPCFLLFVVVSIVTFRPPHYGAYIFPDWANALGWVI Human_NET 502 SNDIQQMMGFRPGLYWRLCWKFVSPAFLLFVVVSIVTFRPPHYGAYIFPDWANALGWVI Human_SERT 522 CRDVKEMLGFSPGWFWRICWVAISPLFLLFVICVSIVTFRPPHYGAYIFPDWANWGWGI Human_DAT 565 ATSSMAMVPIYAAYKFCSLPGSFREKLAYAIAPEKDRELVDRGEVRQFTLRHWLKV Human_DAT 562 ALSSMVLVPIYVIYKFLSTQGSLWERLAYGITPENEHHLVAQRDIRQFQLQHWLAI Human_NET 562 ALSSMVLVPIYVIYKFLSTQGSLWERLAYGITPENEHHLVAQRDIRQFQLQHWLAI Human_SERT 562 ALSSMVLVPIYVIYKFLSTQGSLWERLAYGITPENEHHLVAQRDIRQFQLQHWLAI			
Human_SERT 402 GPSLLFITYAEAIANMPASTFFAIIFFLMLITLGLDSTFAGLEGVITAVLDEFPHVWAKR LeuT_Xray 369 RKHAVLWTAAIVFFSAHLVMFL··NKSLDEMDFWAGTIGVVFFGLTELIIFFWIFGADKA Human_DAT 445 RELFTLFIVLATFLLSLFCVTNGGIYVFTLLDHFAAGTSILFGVLIEAIGVAWFYGVGQF Human_NET 442 RKLFTGVTFSTFLLALFCITKGGIYVLTLLDTFAAGTSILFAVLMEAIGVSWFYGVDRF Human_SERT 462 RERFVLAVVITCFFGSLVTLTFGGAVVVKLLEEYATGPAVLTVALIEAVAVSWFYGITQF LeuT_Xray 427 WEEINRGGIIKVPRIYYVMRYITPAFLAVLLVVWAREYIPKIMEETH····WTVWITRFY Human_DAT 505 SDDIQQMTGQRPSLYWRLCWKLVSPCFLLFVVVSIVTFRPPHYGAYIFPWANALGWVI Human_NET 502 SNDIQQMMGFRPGLYWRLCWKFVSPAFLLFVVVSINFKPPHYGAYIFPWANNVGWGI Human_SERT 522 CRDVKEMLGFSPGWFWRICWVAISPLFLLFVICVSINFKPLTYDDYIFPPWANWVGWGI LeuT_Xray 484 IIGLFLFLTFLVFLAERRRNHESAGT- Human_DAT 565 ATSSMAMVPIYAAYKFCSLPGSFREKLAYAIAPEKDRELVDRGEVRQFTLRHWLKV···· Human_NET 562 ALSSMVLVPIYVIYKFLSTQGSLWERLAYGITPENEHHLVAQRDIRQFQLQHWLAI···· Human_SERT 582 GTSSFICIPTYIAYRLIITPGTFKERIIKSITPETPTEIPC-GDIRLNAV·····			
LeuT_Xray TMH 9 TMH 10 LeuT_Xray 369 RKHAVLWTAAIVFFSAHLVMFL··NKSLDEMDFWAGTIGVVFFGLTELIIFFWIFGADKA Human_DAT 445 RELFTLFIVLATFLLSLFCVTNGGIYVFTLLDHFAAGTSILFGVLIEAIGVAWFYGVGQF Human_NET 442 RKLFTFGVTFSTFLLALFCITKGGIYVLTLLDTFAAGTSILFAVLMEAIGVSWFYGVDRF Human_SERT 462 RERFVLAVVITCFFGSLVTLTFGGAYVVKLLEEYATGPAVLTVALIEAVAVSWFYGITQF LeuT_Xray 427 WEEINRGGIIKVPRIYYVMRYITPAFLAVLLVVWAREYIPKIMEETH····WTVWITRFY Human_DAT 505 SDDIQQMTGQRPSLYWRLCWKLVSPCFLLFVVVVSIVTFRPPHYGAYIFPDWANALGWYI Human_NET 502 SNDIQQMMGFRPGLYWRLCWKFVSPAFLLFVVVVSINFKPPHYGAYIFPDWANALGWGI Human_SERT 522 CRDVKEMLGFSPGWFWRICWVAISPLFLLFIICSFLMSPPQLRLFQYNYPYWSIILGYCI LeuT_Xray 484 IIGLFLFLTFLVFLAERRRNHESAGT- Human_DAT 565 ATSSMAMVPIYAAYKFCSLPGSFREKLAYAIAPEKDRELVDRGEVRQFTLRHWLKV- Human_NET 562 ALSSMVLVPIYVIYKFLSTQGSLWERLAYGITPENEHHLVAQRDIRQFQLQHWLAI Human_SERT 582 GTSSFICIPTYIAYRLIITPGTFKERIIKSITPETPTEIPC-GDIRLNAV			
TMH 9 TMH 10 LeuT_Xray 369 RKHAVLWTAAIVFFSAHLVMFL··NKSLDEMDFWAGTIGVVFFGLTELIIFFWIFGADKA Human_DAT 445 RELFTLFIVLATFLLSLFCVTNGGIYVFTLLDHFAAGTSILFGVLIEAIGVAWFYGVGQF Human_NET 442 RKLFTFGVTFSTFLLALFCITKGGIYVLTLLDTFAAGTSILFAVLMEAIGVSWFYGVDRF Human_SERT 462 RERFVLAVVITCFFGSLVTLTFGGAYVVKLLEEYATGPAVLTVALIEAVAVSWFYGITQF LeuT_Xray 427 WEEINRGGIIKVPRIYYYMRYITPAFLAVLLVVWAREYIPKIMEETH····WTVWITRFY Human_DAT 505 SDDIQQMTGQRPSLYWRLCWKLVSPCFLLFVVVSIVTFRPPHYGAYIFPWANALGWVI Human_NET 502 SNDIQQMMGFRPGLYWRLCWKFVSPAFLLFVVVSIVTFRPPHYGAYIFPWANNVGWGI Human_SERT 522 CRDVKEMLGFSPGWFWRICWVAISPLFLLFVIVVSINFKPLTYDDYIFPPWANWVGWGI LeuT_Xray 484 IIGLFLFLTFLVFLAERRRNHESAGT- Human_DAT 565 ATSSMAMVPIYAAYKFCSLPGSFREKLAYAIAPEKDRELVDRGEVRQFTLRHWLKV Human_NET 562 ALSSMVLVPIYVIYKFLSTQGSLWERLAYGITPENEHHLVAQRDIRQFQLQHWLAI Human_SERT 582 GTSSFICIPTYIAYRLIITPGTFKERIIKSITPETPTEIPC-GDIRLNAV		402	GPSILFITYAEAIANMPASTFFAIIFFLMLITLGLDSTFAGLEGVITAVLDEFPHVWAKR
LeuT_Xray 369 RKHAVLWTAAIVFFSAHLVMFLNKSLDEMDFWAGTIGVVFFGLTELIIFFWIFGADKA Human_DAT 445 RELFTLFIVLATFLLSLFCVTNGGIYVFTLLDHFAAGTSILFGVLIEAIGVAWFYGVGQF Human_NET 442 RKLFTFGVTFSTFLLALFCITKGGIYVLTLLDTFAAGTSILFAVLMEAIGVSWFYGVDRF Human_SERT 462 RERFVLAVVITCFFGSLVTLTFGGAYVVKLLEEYATGPAVLTVALIEAVAVSWFYGITQF LeuT_Xray 427 WEEINRGGIIKVPRIYYVMRYITPAFLAVLLVVWAREYIPKIMEETHWTVWITRFY Human_DAT 505 SDDIQQMTGQRPSLYWRLCWKLVSPCFLLFVVVVSIVTFRPPHYGAYIFPDWANALGWUI Human_NET 502 SNDIQQMMGFRPGLYWRLCWKLVSPAFLLFVVVVSINFKPLTYDDYIFPPWANWVGWGI Human_SERT 522 CRDVKEMLGFSPGWFWRICWVAISPLFLLFIICSFLMSPPQLRLFQYNYPYWSIILGYCI LeuT_Xray 484 IIGLFLFLTFLVFLAERRRNHESAGT	Leur_xray		
Human_DAT 445 RELFTLFIVLATFLLSLFCVTNGGIYVFTLLDHFAAGTSILFGVLIEAIGVAWFYGVGQF Human_NET 442 RKLFTFGVTFSTFLLALFCITKGGIYVLTLLDTFAAGTSILFGVLIEAIGVAWFYGVGQF Human_SERT 462 REFFVLAVVITCFFGSLVTLTFGGAYVVKLLEEYATGPAVLTVALIEAVAVSWFYGITQF LeuT_Xray 427 WEEINRGGIIKVPRIYYVVMRYITPAFLAVLLVVWAREYIPKIMEETHWTVWITRFY Human_DAT 505 SDDIQQMTGQRPSLYWRLCWKLVSPCFLLFVVVVSIVTFRPPHYGAYIFPDWANALGWVI Human_NET 502 SNDIQQMMGFRPGLYWRLCWKLVSPAFLLFVVVVSINFKPLTYDDYIFPPWANWVGWGI Human_SERT 522 CRDVKEMLGFSPGWFWRICWVAISPLFLLFIICSFLMSPPQLRLFQYNYPYWSIILGYCI LeuT_Xray 484 IIGLFLFLTFLVFLAERRRNHESAGT	LeuT Yrav	369	
Human_NET 442 RKLFTFGVTFSTFLLALFCITKGGIYVLTLLDTFAAGTSILFAVLMEAIGVSWFYGVDFF Human_SERT 462 REFFVLAVVITCFFGSLVTLTFGGAYVVKLLEEYATGPAVLTVALIEAVAVSWFYGITQF LeuT_Xray 427 WEEINRGGIIKVPRIYYYVMRYITPAFLAVLLVVWAREYIPKIMEETH····WTVWITRFY Human_DAT 505 SDDIQQMTGQRPSLYWRLCWKLVSPCFLLFVVVVSIVTFRPPHYGAYIFPDWANALGWVI Human_NET 502 SNDIQQMMGFRPGLYWRLCWKLVSPCFLLFVVVVSIVTFRPPHYGAYIFPDWANALGWVI Human_SERT 522 CRDVKEMLGFSPGWFWRICWVAISPLFLLFIICSFLMSPPQLRLFQYNYPYWSIILGYCI LeuT_Xray 484 IIGLFLFTFLVFLAERRRNHESAGT- Human_DAT 565 ATSSMAMVPIYAAYKFCSLPGSFREKLAYAIAPEKDRELVDRGEVRQFTLRHWLKV···· Human_NET 562 ALSSMVLVPIYVIYKFLSTQGSLWERLAYGITPENEHHLVAQRDIRQFQLQHWLAI···· Human_SERT 582 GTSSFICIPTYIAYRLIITPGTFKERIIKSITPETPTEIPC-GDIRLNAV·····			
Human_SERT 462 RERFVLAVVITCFFGSLVTLTFGGAYVVKLLEEYATGPAVLTVALIEAVAVSWFYGITQF LeuT_Xray 462 RERFVLAVVITCFFGSLVTLTFGGAYVVKLLEEYATGPAVLTVALIEAVAVSWFYGITQF LeuT_Xray 427 WEEINRGGIIKVPRIYYYVMRYITPAFLAVLLVVWAREYIPKIMEETH···WTVWITRFY Human_DAT 505 SDDIQQMTGQRPSLYWRLCWKLVSPCFLLFVVVVSIVTFRPPHYGAYIFPDWANALGWVI Human_NET 502 SNDIQQMMGFRPGLYWRLCWKFVSPAFLLFVVVVSIVTFRPPHYGAYIFPDWANALGWVI Human_SERT 522 CRDVKEMLGFSPGWFWRICWVAISPLFLLFIICSFLMSPPQLRLFQYNYPYWSIILGYCI LeuT_Xray 484 IIGLFLFTFLVFLAERRRNHESAGT- Human_DAT 565 ATSSMAMVPIYAAYKFCSLPGSFREKLAYAIAPEKDRELVDRGEVRQFTLRHWLKV···· Human_NET 562 ALSSMVLVPIYVIYKFLSTQGSLWERLAYGITPENEHHLVAQRDIRQFQLQHWLAI···· Human_SERT 582 GTSSFICIPTYIAYRLIITPGTFKERIIKSITPETPTEIPC-GDIRLNAV·····			
LeuT_Xray TMH11 LeuT_Xray 427 Human_DAT 505 SDDIQQMTGQRPSLYWRLCWKLVSPCFLLFVVVVSIVTFRPPHYGAYIFPDWANALGWVI Human_NET 502 SNDIQQMMGFRPGLYWRLCWKLVSPAFLLFVVVVSINFKPLTYDDYIFPPWANWVGWGI Human_SERT 522 CRDVKEMLGFSPGWFWRICWVAISPLFLLFIICSFLMSPPQLRLFQYNYPYWSIILGYCI LeuT_Xray TMH12 LeuT_Xray 484 HUman_DAT 565 ATSSMAMVPIYAAYKFCSLPGSFREKLAYAIAPEKDRELVDRGEVRQFTLRHWLKV···· Human_NET 562 ALSSMVLVPIYVIYKFLSTQGSLWERLAYGITPENEHHLVAQRDIRQFQLQHWLAI···· Human_SERT 582 GTSSFICIPTYIAYRLIITPGTFKERIIKSITPETPTEIPC-GDIRLNAV·····			
TMH11 LeuT_Xray 427 WEEINRGGIIKVPRIYYYVMRYITPAFLAVLLVVWAREYIPKIMEETH···WTVWITRFY Human_DAT 505 SDDIQQMTGQRPSLYWRLCWKLVSPCFLLFVVVVSIVTFRPPHYGAYIFPDWANALGWVI Human_NET 502 SNDIQQMMGFRPGLYWRLCWKLVSPAFLLFVVVVSIINFKPLTYDDYIFPPWANWVGWGI Human_SERT 522 LeuT_Xray 6 Human_DAT 565 A84 IIGLFLFLTFLVFLAERRRNHESAGT- Human_DAT 565 ATSSMAMVPIYAAYKFCSLPGSFREKLAYAIAPEKDRELVDRGEVRQFTLRHWLKV Human_NET 562 ALSSMVLVPIYVIYKFLSTQGSLWERLAYGITPENEHHLVAQRDIRQFQLQHWLAI Human_SERT 582 GTSSFICIPTYIAYRLIITPGTFKERIIKSITPETPTEIPC-GDIRLNAV	1011		
Human_DAT 505 SDDIQQMTGQRPSLYWRLCWKLVSPCFLLFVVVVSIVTFRPPHYGAYIFPDWANALGWVI Human_NET 502 SNDIQQMMGFRPGLYWRLCWKFVSPAFLLFVVVVSINFKPLTYDDYIFPPWANWVGWGI Human_SERT 522 CRDVKEMLGFSPGWFWRICWVAISPLFLLFIICSFLMSPPQLRLFQYNYPYWSIILGYCI LeuT_Xray 484 IIGLFLFLTFLVFLAERRRNHESAGT- Human_DAT 565 ATSSMAMVPIYAAYKFCSLPGSFREKLAYAIAPEKDRELVDRGEVRQFTLRHWLKV Human_NET 562 ALSSMVLVPIYVIYKFLSTQGSLWERLAYGITPENEHHLVAQRDIRQFQLQHWLAI Human_SERT 582 GTSSFICIPTYIAYRLIITPGTFKERIIKSITPETPTEIPC-GDIRLNAV			
Human_NET 502 SNDIQQMMGFRPGLYWRLCWKFVSPAFLLFVVVVSIINFKPLTYDDYIFPPWANWVGWGI Human_SERT 522 CRDVKEMLGFSPGWFWRICWVAISPLFLLFIICSFLMSPPQLRLFQYNYPYWSIILGYCI LeuT_Xray 484 IIGLFLFLTFLVFLAERRRNHESAGT Human_DAT 565 ATSSMAMVPIYAAYKFCSLPGSFREKLAYAIAPEKDRELVDRGEVRQFTLRHWLKV Human_NET 562 ALSSMVLVPIYVIYKFLSTQGSLWERLAYGITPENEHHLVAQRDIRQFQLQHWLAI Human_SERT 582 GTSSFICIPTYIAYRLIITPGTFKERIIKSITPETPTEIPC-GDIRLNAV	LeuT_Xray	427	WEEINRGGIIKVPRIYYYVMRYITPAFLAVLLVVWAREYIPKIMEETHWTVWITRFY
Human_SERT 522 CRDVKEMLGFSPGWFWRICWVAISPLFLLFIICSFLMSPPQLRLFQYNYPYWSIILGYCI LeuT_Xray 1 TMH12 LeuT_Xray 484 IIGLFLFLTFLVFLAERRRNHESAGT Human_DAT 565 ATSSMAMVPIYAAYKFCSLPGSFREKLAYAIAPEKDRELVDRGEVRQFTLRHWLKV Human_NET 562 ALSSMVLVPIYVIYKFLSTQGSLWERLAYGITPENEHHLVAQRDIRQFQLQHWLAI Human_SERT 582 GTSSFICIPTYIAYRLIITPGTFKERIIKSITPETPTEIPC-GDIRLNAV		505	SDDIQQMTGQRPSLYWRLCWKLVSPCFLLFVVVVSIVTFRPPHYGAYIFPDWANALGWVI
LeuT_Xray TMH12 LeuT_Xray 484 IIGLFLFLTFLVFLAERRRNHESAGT- Human_DAT 565 ATSSMAMVPIYAAYKFCSLPGSFREKLAYAIAPEKDRELVDRGEVRQFTLRHWLKV Human_NET 562 ALSSMVLVPIYVIYKFLSTQGSLWERLAYGITPENEHHLVAQRDIRQFQLQHWLAI Human_SERT 582 GTSSFICIPTYIAYRLIITPGTFKERIIKSITPETPTEIPC-GDIRLNAV	Human_NET	502	SNDIQQMMGFRPGLYWRLCWKFVSPAFLLFVVVVSIINFKPLTYDDYIFPPWANWVGWGI
TMH12 LeuT_Xray 484 IIGLFLFLTFLVFLAERRRNHESAGT Human_DAT 565 ATSSMAMVPIYAAYKFCSLPGSFREKLAYAIAPEKDRELVDRGEVRQFTLRHWLKV Human_NET 562 ALSSMVLVPIYVIYKFLSTQGSLWERLAYGITPENEHHLVAQRDIRQFQLQHWLAI Human_SERT 582 GTSSFICIPTYIAYRLIITPGTFKERIIKSITPETPTEIPC-GDIRLNAV	Human_SERT	522	CRDVKEMLGFSPGWFWRICWVAISPLFLLFIICSFLMSPPQLRLFQYNYPYWSIILGYCI
LeuT_Xray 484 IIGLFLFLTFLVFLAERRRNHESAGT Human_DAT 565 ATSSMAMVPIYAAYKFCSLPGSFREKLAYAIAPEKDRELVDRGEVRQFTLRHWLKV Human_NET 562 ALSSMVLVPIYVIYKFLSTQGSLWERLAYGITPENEHHLVAQRDIRQFQLQHWLAI Human_SERT 582 GTSSFICIPTYIAYRLIITPGTFKERIIKSITPETPTEIPC-GDIRLNAV	LeuT_Xray		
Human_DAT 565 ATSSMAMVPIYAAYKFCSLPGSFREKLAYAIAPEKDRELVDRGEVRQFTLRHWLKV Human_NET 562 ALSSMVLVPIYVIYKFLSTQGSLWERLAYGITPENEHHLVAQRDIRQFQLQHWLAI Human_SERT 582 GTSSFICIPTYIAYRLIITPGTFKERIIKSITPETPTEIPC-GDIRLNAV			
Human_NET 562 ALSSMVLVPIYVIYKFLSTQGSLWERLAYGITPENEHHLVAQRDIRQFQLQHWLAI Human_SERT 582 GTSSFICIPTYIAYRLIITPGTFKERIIKSITPETPTEIPC-GDIRLNAV			
Human_SERT 582 GTSSFICIPTYIAYRLIITPGTFKERIIKSITPETPTEIPC-GDIRLNAV			
Leur_xray	1997년 1998년 1997년 19 1997년 1997년 199 1997년 1997년 199	582	GTSSFICIPTYIAYRLIITPGTFKERIIKSITPETPTEIPC-GDIRLNAV
	LeuT_Xray		

which indicated that Asp79 is involved in ligand binding [24] by forming a salt-bridge with the positively charged nitrogen atom on cocaine, and-site directed mutagenesis studies on DAT [28] and SERT [26], which suggested other amino acids involved in ligand binding. Poses from the docking of clomipramine were compared with an X-ray crystal structure of LeuT_{Aa} with clomipramine bound in the extracellular-facing cavity [32].

Coordinates are available from the authors upon request.

Results

The DAT, SERT and NET models with their wateraccessible surfaces and putative drug binding pockets, colour coded according to their EPS, are shown in Figs. 2, 3 and 4.

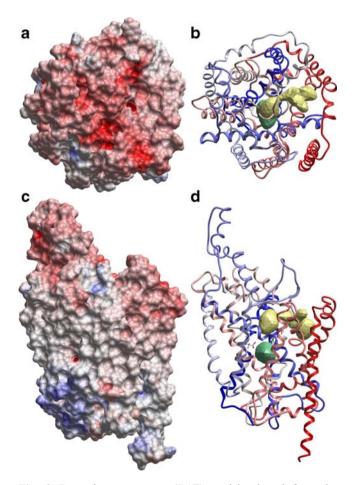


Fig. 2 Dopamine transporter (DAT) model, viewed from the extracellular side (**a**, **b**), and in the membrane plane with the extracellular side up (**c**, **d**). The water-accessible surface (**a**, **c**) is colour coded according to the electrostatic potentials 1.4 Å outside the surface. Scale: *Red* Negative ($-10 \text{ kcal mol}^{-1}$), to *blue* positive ($+10 \text{ kcal mol}^{-1}$). Binding pocket 1 is displayed in *green*, and binding pocket 2 is displayed in *yellow*. Colouring of the C α traces of the model is *blue* via *white* to *red* from N-terminal to C-terminal

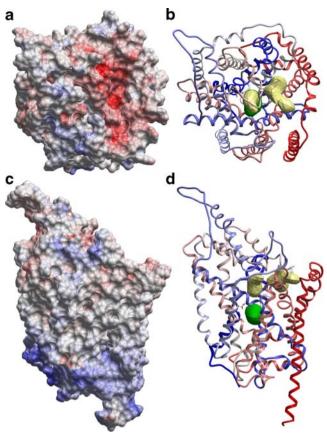


Fig. 3 Serotonin transporter (SERT) model, viewed from the extracellular side (a, b), and in the membrane plane with the extracellular side up (c, d). Colour coding as in Fig. 2

In each model, TMH 1-5 and 6-10 were arranged with a pseudo-twofold axis in the membrane plane, constituting the protein core of the 12 TMH bundle. As in the LeuT_{Aa} crystal structure [20], the DAT, SERT and NET models resembled shallow 'shot glasses', with a tight opening towards the extracellular side. TMH6 was kinked near the drug binding site.

Viewed from the extracellular side (Figs. 2a, 3a, 4a), the EPS of the entrance of the substrate permeation pathway of each of the DAT, SERT and NET models was distinctly more negative than other areas. The EPS of the models, viewed in the membrane plane (Figs. 2c, 3c, 4c), show that each transporter model has a dipole moment, being more negative towards the extracellular side. This is in accordance with the general "positive inside rule" for membrane proteins [39].

For each model, ICMPocketFinder identified two putative drug-binding pockets, one (binding pocket 1) located halfway across the membrane bilayer in the area corresponding to the substrate binding pocket of leucine in the LeuT_{Aa} crystal structure [20], and one (binding pocket 2) in the extracellular-facing cavity forming part of the substrate permeation pathway, as shown in Figs. 2(b,d), 3(b,d) and 4(b,d). Amino acids in TMHs 1, 3, 6 and

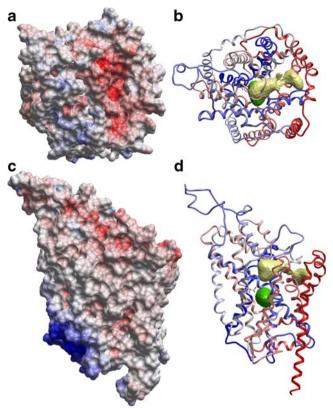


Fig. 4 Noradrenalin transporter (NET) model, viewed from the extracellular side (a, b) and in the membrane plane with the extracellular side up (c, d). Colour coding as in Fig. 2

Table 1 Amino acids in binding pocket 1 (ICM Pocket Finder) of thedopamine transporter (DAT), serotonin transporter (SERT), andnoradrenalin transporter (NET). *TMH* Trans-membrane helix

	DAT	NET	SERT
TMH1	Phe76	Phe72	Tyr95 ^a
	Ala77	Ala73	Ala96
	Asp79	Asp75	Asp98
	Ala81	Ala77	Gly100 ^a
TMH3	Ser149 ^a	Ala145	Ala169
	Val152	Val148	Ile172 ^a
	Gly153	Gly149	Ala173 ^a
	Tyr156	Tyr152	Tyr176
TMH6	Phe320	Phe317	Phe335
	Ser321	Ser318	Ser336
	Gly323	Gly320	Gly338
	Phe326	Phe323	Phe341
	Val328	Val325	Val343
TMH8	Ser422	Ser419	Ser438
	Ala423 ^a	Ser420 ^a	Thr439 ^a
	Gly425	Gly422	Ala441 ^a
	Gly426	Gly423	Gly442

8 contributed to binding pocket 1 (Table 1), while amino acids in TMHs 1, 3, 6, 10 and 11, as well as in the extracellular loops between TMH7 and TMH8 (EL4), and TMH11 and TMH12 (EL6), contributed to binding pocket 2 (Table 2).

The stereochemical qualities of the DAT, SERT and NET models, analysed with the Procheck [36], What_Check [37], and Errat [38] procedures, are shown in Table 3. The overall quality factors were in the range of 87.5–89.7, indicating a valid stereochemistry of the models.

Figure 5 shows a close-up of the two binding pockets in DAT displaying their hydrophobic and hydrophilic properties.

Table 2 Amino acids in binding pocket 2 (ICM Pocket Finder) ofDAT, NET and SERT

	DAT	NET	SERT
TMH1	Leu80	Leu76	Leu99
	Ala81	Ala77	Gly100
	Trp84	Trp80	Trp103
	Arg85	Arg81	Arg104
	Tyr88	Tyr84	Tyr107
	Leu89	Leu85	Ile108 ^a
TMH3	Phe155 ^a	Tyr151	Tyr175
	Tyr156	Tyr152	Tyr176
	Ile159	Ile155	Ile179
	Trp162	Trp158	Trp182
TMH6	Ile312	Ile309	Ile327
	Asp313	Asp310	Asp328
	Thr316	Thr313	Ala331
	Phe320	Phe317	Phe335
EL4	Lys384	Thr381 ^a	Lys399
	Asp385	Glu382 ^a	Asp400
	(Gap)	(Gap)	Ala401 ^a
	Gly386	Gly383	Gly402
	Pro387	Ala384 ^a	Pro403
TMH10	Phe472 ^a	Leu469 ^a	Val489 ^a
	Thr473	Thr470	Lys490 ⁸
	Asp476	Asp473	Glu493
	His477 ^a	Thr474 ^a	Glu494
	Ala480	Ala477	Thr497
	Gly481	Gly478	Gly498
	Thr482	Thr479	Pro499
	Leu485	Leu482	Leu502
TMH11	Ser539	Ser536	Phe556
	Phe543	Phe540	Pro560 ^a
	Arg544 ^a	Lys541 ^a	Pro561 ^a
EL6	His547 ^a	Thr544 ^a	Arg564
	Tyr548	Tyr545	Leu565
	Tyr551	Tyr548	Tyr568

^a Non-conserved amino acids

^aNon-conserved amino acids

 Table 3
 Validation of transporter protein structures

	PROCI (Ramad	HECK chandran	Plot)	WHAT_CHECK	ERRAT	
	Core ^a (%)	Allow ^b (%)	Gener ^c (%)	Disall ^d (%)		Overall quality factor
SERT	94.0	6.0	0.0	0.0	Satisfactory	87.7
DAT	94.2	5.8	0.0	0.0	Satisfactory	87.5
NET	93.8	6.0	0.0	0.0	Satisfactory	89.7

^a Most favoured regions

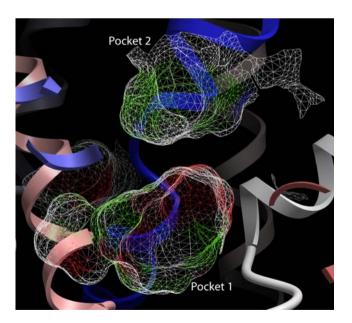
^bAdditional allowed regions

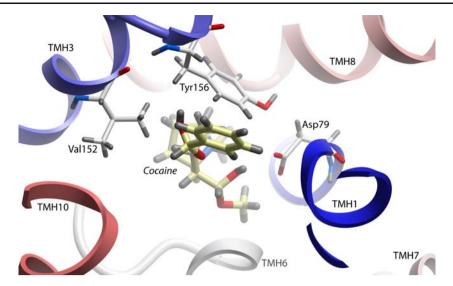
^c Generously allowed regions

^d Disallowed regions (http://nihserver.mbi.ucla.edu/SAVS/)

Binding pocket 1 featured both hydrophobic and hydrogen bond acceptor properties, while binding pocket 2 featured hydrophobic and slightly hydrogen bond donor properties. The hydrogen acceptor properties in binding pocket 1 were centred around Asp79 (TMH1), while Arg85 (TMH1) contributed to the hydrogen bond donor properties in binding pocket 2.

Figure 6 shows a cocaine pose after docking the cocaine molecule in flexible DAT. The figure illustrates the interaction of cocaine with amino acids reported to be part of a cocaine-binding site in site-directed mutagenesis studies: Asp79




Fig. 5 Close-up of the two binding pockets in DAT viewed in the membrane plane (cytoplasm downwards) displaying their hydrophobic and hydrophilic properties. *Green areas* Hydrophobic properties, *red areas* hydrogen bond acceptor properties, *blue areas* hydrogen bond donor properties. Colouring of the C α traces of the model is *blue* via *white* to *red* from N-terminal to C-terminal

(TMH1) [24], Val152 (TMH3) [28], and Tyr156 (Tyr176 in SERT) (TMH3) [26]. The docking indicated a salt-bridge between Asp79 and the positively charged nitrogen atom of cocaine, and that aromatic interactions may be formed between Tyr156 and the aromatic ring of cocaine. Other interactions observed in the cocaine-DAT complex were cation-pi interactions between Phe76 (TMH1) and the positively charged nitrogen atom of cocaine, aromatic interactions between Phe320 (TMH6) and the aromatic ring of cocaine, and hydrophobic interactions between Phe326 (TMH6) and the tropane ring of cocaine.

A clomipramine pose after docking the clomipramine molecule in flexible DAT is shown in Fig. 7. The crystal structure of a LeuT_{Aa}-clomipramine complex [32] was superimposed with the DAT-clomipramine complex, and clomipramine from the LeuT_{Aa}-clomipramine complex [32] is displayed for comparison with the clomipramine pose after flexible docking. The orientations of the docked clomipramine molecule and the clomipramine molecule superimposed from the crystal structure are similar: the tricyclic moieties almost overlap, and the side-chains are orientated in the same direction. However, compared with LeuT_{Aa}, DAT has an insertion in EL4 (Lys384 and Asp385) (Fig. 1) and, after docking, the side-chain of clomipramine had moved away from Lys384 because of sterical hindrance. In the complex of clomipramine docked into flexible DAT, a salt-bridge may be formed between the positively charged nitrogen atom of clomipramine and Asp385, and possibly also with Asp476 (TMH10). The chloride atom connected to the tricyclic moiety of clomipramine was situated between Arg85 (TMH1) and Lys384. Aromatic interactions were observed between the aromatic rings of clomipramine and Tyr156 (TMH3), and Phe320 (TMH6). Phe155 (TMH3) was oriented towards the nitrogen atom in the tricyclic moiety of clomipramine.

Discussion

Structural studies of drug interactions with different molecular targets have made significant contributions to drug discovery and the understanding of the molecular mechanisms of drug action. In particular, molecular modelling may be used to investigate the intermolecular forces determining the potency and specificity of drug action on a target. DAT, SERT and NET are membrane proteins, for which crystallisation is technically difficult. Molecular modelling based on homology with a known crystal structure may therefore provide valuable insights into their structure and molecular mechanisms. Homology between two proteins may be determined by sequence similarity, indicating the presence of similar features such

Fig. 6 Cocaine in DAT binding pocket 1 after interactive docking and subsequent docking in flexible DAT, viewed from the extracellular side. Amino acids reported to be part of a cocaine-binding site in site-directed mutagenesis studies: Asp79 [trans-membrane helix (TMH)1]

[24], Val152 (TMH3) [28], and Tyr156 (Tyr176 in SERT) (TMH3) [26] are displayed as *sticks*. Colour coding: *Red* O, *blue* N, *grey* H, *yellow* C in cocaine, *white* C in DAT. Colouring of the C α traces of the model is *blue* via *white* to *red* from N-terminal to C-terminal

as homologous protein folds. The transport mechanism of LeuT_{Aa} uses an electrochemical sodium gradient to provide an inward movement of substrate against a concentration gradient, and thus resembles the transport mechanisms of DAT, SERT and NET. Their related functional mechanisms and amino acid sequence indicate that these proteins share a common overall folding of their membrane spanning regions, and that the LeuT_{Aa} crystal structure may serve

as a suitable template for homology modeling of DAT, SERT and NET.

In order to obtain a valid molecular model of a protein using a crystal structure of another protein as template, the target–template amino acid alignment should be optimal, and it should be possible to identify corresponding positions in the target and the template. We have previously constructed a SERT model based on the $LeuT_{Aa}$ crystal structure [20],

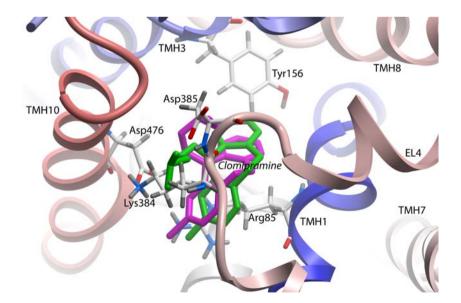


Fig. 7 Clomipramine in DAT binding pocket 2, viewed from extracellular side. *Purple clomipramine* After interactive docking and subsequent docking in flexible DAT, *green clomipramine* superimposed from the crystal structure of a LeuTAa–clomipramine complex [32]. Amino acids assumed to be part of a clomipramine

binding site according to the LeuTAa–clomipramine complex [32], and insertion amino acids in EL4 of DAT, Lys384 and Asp385, are displayed as *sticks*. Colour coding: *Red* O, *blue* N, *grey* H, *yellow* C in clomipramine, *white* C in DAT. Colouring of the C α traces of the model is *blue* via *white* to *red* from N-terminal to C-terminal

using a Psi-BLAST (http://www.ncbi.nlm.nih.gov/BLAST/) amino acid sequence alignment of LeuT_{Aa}, human glycine transporter (GlyT1b), human GABA transporter (GAT1), human dopamine transporter (DAT), and human SERT [15]. In the present study, we have used a comprehensive sequence alignment of all known prokaryotic and eukaryotic NSS proteins [10] that differs from the previously proposed alignment [20] in TMHs 4, 5 and 9, and in extracellular loops 2, 3, and 4. The present SERT model therefore differs from our previous model in these regions, but not in the areas contributing to the substrate translocation area (TMHs 1, 3, 6 and 8). A multiple sequence alignment highlights evolutionary relationships and increases the probability that corresponding sequence positions are correctly aligned [40].

The EPS calculated from the DAT, SERT and NET models may illustrate the electrostatic aspects of their substrate affinities. These proteins transport positively charged monoamines and are inhibited by cationic drugs. As seen in Figs. 2(a,c), 3(a,c), and 4(a,c), which show the models viewed from the extracellular side, the EPS of the drug recognition site in each model was relatively negative. This clearly indicates that electrostatic forces between the negatively charged binding site and positively charged ligands contribute to ligand recognition and binding to the transporter.

The ICMPocketFinder program identified a possible drug-binding pocket involving TMHs 1, 3, 6 and 8 (binding pocket 1, Table 1) of the DAT, SERT and NET models, in an area corresponding to the substrate-binding pocket of leucine in the LeuT_{Aa} crystal structure [20]. As shown in Fig. 6, binding site 1 includes Asp79 (TMH1), Val152 (TMH3), and Tyr156 (Tyr176 in SERT) (TMH3), previously reported to be important for cocaine binding by sitedirected mutagenesis studies [24, 26, 28]. Site-directed mutagenesis data on SERT, DAT and NET also confirm involvement of amino acids in TMH1 [21-25], TMH3 [23, 25-29], TMH6 [30], and TMH8 [30, 31] in the drugbinding area. Figure 5 shows that the two binding pockets are in close proximity and probably slightly overlapping, with Tyr156 (TMH3) and Phe320 (TMH6) participating in both binding pockets.

The location of binding pocket 2, which was identified by ICMPocketFinder, has been confirmed by two X-ray crystal structures of LeuT_{Aa} with TCAs bound in the extracellular-facing cavity [32, 33]. The crystal structure complexes show that TCAs interact with Leu25, Leu29, Arg30, Val33 and Gln34 (TMH1), Tyr107, Tyr108 and lle111 (TMH3), Phe253 (TMH6), Ala319 and Phe320 (EL4), and Leu400, Asp401 and Asp404 (TMH10) in LeuT_{Aa}. These amino acids correspond to the following DAT residues (Table 2): Leu80, Trp84, Arg85, Tyr88 and Leu89 (TMH1), Phe155, Tyr156 and Ile159 (TMH3), Phe320 (TMH6), Gly386 and Pro387 (EL4), and Phe472, Thr473 and Asp476 (TMH10). Apparently, TCAs stabilise the extracellular gate of $LeuT_{Aa}$ in closed conformation and inhibit substrate translocation noncompetitively [32, 33]. The orientation of clomipramine after flexible docking (Fig. 7) was similar to that in the $LeuT_{Aa}$ crystal structure complex [32], and interacting DAT residues were in accordance with those in the clomipramine-LeuTAa X-ray crystal structure complex [32]. The most striking differences between binding pocket 2 of DAT. SERT and NET are in TMH10 (Table 2). The TCA clomipramine is highly selective for SERT over DAT and NET [7]. A possible explanation may be strong interactions between clomipramine and the charged SERT residues Lys490, Glu493 and Glu494 in TMH10. Mutating these SERT residues to alanine may affect clomipramine affinity for SERT. Clomipramine has a low affinity to DAT compared to NET and SERT and, as shown in Table 2, Phe155 in DAT corresponds to tyrosines in NET and SERT. These tyrosines may provide stronger interactions with the nitrogen atom in the tricyclic group of clomipramine than does Phe155 in DAT. A previous docking study of buspirone analogues into a LeuTAa-based SERT homology model [11] suggested that binding pocket 1 may correspond to a high affinity buspirone binding site, while binding pocket 2 may correspond to a low affinity buspirone binding site.

The DAT, SERT and NET models presented in this study may be considered as working tools for further investigation of their structure and drug interactions. Amino acids in binding pockets 1 and 2 (Tables 1, 2) are obvious candidates for site-directed mutagenesis studies, and the models may be used for docking studies. Interactions seen in drug-target complexes in docking studies can shed light on the intermolecular forces determining the specificities and potencies of drugs. Indeed, structural information about DAT, SERT and NET could potentially aid the structure-aided design of novel neurotransmitter reuptake inhibitors.

Transporter proteins may undergo substantial conformational changes during the transport cycle. Four X-ray crystal structures of the bacterial ABC transporter lipid flippase, MsbA, trapped in different conformations, have shown that large ranges of motion, changing the accessibility of the transporter from a cytoplasmic (inward) facing to an extracellular (outward) facing conformation, may be required for substrate transport [41]. Studies of the bacterial Lac Permease [42] have indicated that widespread cooperative conformational changes, including sliding and tilting motions of the TMHs, may occur during ion and substrate transport. The 12 TMHs may be loosely packed in different conformations associated with transport of substrate molecules. The present DAT, SERT and NET models are based on a closed conformation of LeuT_{Aa} and their drug recognising conformations, open to the extracellular side, might be slightly different from the closed conformations presented here. The structural flexibility of transporters should be considered when performing docking studies, as insight into structural changes of both the drug and the drug target for adopting an energetically favourable complex (induced-fit) can help predict how a designed drug will fit into a drug target.

References

- Bardo MT (1998) Neuropharmacological mechanisms of drug reward: beyond dopamine in the nucleus accumbens. Crit Rev Neurobiol 12:37–67
- Uhl G, Lin Z, Metzger T et al (1998) Dopamine transporter mutants, small molecules, and approaches to cocaine antagonist/ dopamine transporter disinhibitor development. Methods Enzymol 296:456–465
- 3. Hall FS, Li XF, Sora I et al (2002) Cocaine mechanisms: enhanced cocaine, fluoxetine and nisoxetine place preferences following monoamine transporter deletions. Neuroscience 115:153–161
- Uhl GR, Hall FS, Sora I (2002) Cocaine, reward, movement and monoamine transporters. Mol Psychiatry 7:21–26
- Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 122:509–522
- Manji HK, Duman RS (2001) Impairments of neuroplasticity and cellular resilience in severe mood disorders: implications for the development of novel therapeutics. Psychopharmacol Bull 35:5–49
- Tatsumi M, Groshan K, Blakely RD et al (1997) Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol 340:249–258
- Barker EL, Blakely RD (1995) Norepinephrine and serotonin transporters: molecular targets of antidepressant drugs. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven, New York, pp 321–334
- Forrest LR, Tavoulari S, Zhang YW et al (2007) Identification of a chloride ion binding site in Na+/Cl -dependent transporters. Proc Natl Acad Sci USA 104:12761–12766
- Beuming T, Shi L, Javitch JA et al (2006) A comprehensive structure-based alignment of prokaryotic and eukaryotic neurotransmitter/Na+ symporters (NSS) aids in the use of the LeuT structure to probe NSS structure and function. Mol Pharmacol 70:1630–1642
- 11. Jaronczyk M, Chilmonczyk Z, Mazurek AP et al (2008) The molecular interactions of buspirone analogues with the serotonin transporter. Bioorg Med Chem 16:9283–9294
- Jorgensen AM, Tagmose L, Jorgensen AM et al (2007) Homology modeling of the serotonin transporter: insights into the primary escitalopram-binding site. Chem Med Chem 2:815–826
- Ravna AW, Jaronczyk M, Sylte I (2006) A homology model of SERT based on the LeuT(Aa) template. Bioorg Med Chem Lett 16:5594–5597
- Ravna AW, Edvardsen O (2001) A putative three-dimensional arrangement of the human serotonin transporter transmembrane helices: a tool to aid experimental studies. J Mol Graph Model 20:133–144
- Ravna AW (2006) Three-dimensional models of neurotransmitter transporters and their interactions with cocaine and S-citalopram. World J Biol Psychiatry 7:99–109

- Ravna AW, Sylte I, Dahl SG (2003) Molecular model of the neural dopamine transporter. J Comput Aided Mol Des 17:367– 382
- Ravna AW, Sylte I, Dahl SG (2003) Molecular mechanism of citalopram and cocaine interactions with neurotransmitter transporters. J Pharmacol Exp Ther 307:34–41
- Ravna AW, Sylte I, Kristiansen K et al (2006) Putative drug binding conformations of monoamine transporters. Bioorg Med Chem 14:666–675
- Xhaard H, Backstrom V, Denessiouk K et al (2008) Coordination of Na(+) by monoamine ligands in dopamine, norepinephrine, and serotonin transporters. J Chem Inf Model 48:1423–1437
- Yamashita A, Singh SK, Kawate T et al (2005) Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437:215–223
- Barker EL, Moore KR, Rakhshan F et al (1999) Transmembrane domain I contributes to the permeation pathway for serotonin and ions in the serotonin transporter. J Neurosci 19:4705–4717
- 22. Barker EL, Perlman MA, Adkins EM et al (1998) High affinity recognition of serotonin transporter antagonists defined by species-scanning mutagenesis. An aromatic residue in transmembrane domain I dictates species-selective recognition of citalopram and mazindol. J Biol Chem 273:19459–19468
- 23. Henry LK, Field JR, Adkins EM et al (2006) Tyr-95 and Ile-172 in transmembrane segments 1 and 3 of human serotonin transporters interact to establish high affinity recognition of antidepressants. J Biol Chem 281:2012–2023
- 24. Kitayama S, Shimada S, Xu H et al (1992) Dopamine transporter site-directed mutations differentially alter substrate transport and cocaine binding. Proc Natl Acad Sci USA 89:7782–7785
- 25. Lin Z, Wang W, Kopajtic T et al (1999) Dopamine transporter: transmembrane phenylalanine mutations can selectively influence dopamine uptake and cocaine analog recognition. Mol Pharmacol 56:434–447
- Chen JG, Sachpatzidis A, Rudnick G (1997) The third transmembrane domain of the serotonin transporter contains residues associated with substrate and cocaine binding. J Biol Chem 272:28321–28327
- Larsen MB, Elfving B, Wiborg O (2004) The chicken serotonin transporter discriminates between serotonin-selective reuptake inhibitors. A species-scanning mutagenesis study. J Biol Chem 279:42147–42156
- Lee SH, Chang MY, Lee KH et al (2000) Importance of valine at position 152 for the substrate transport and 2beta-carbomethoxy-3beta-(4-fluorophenyl)tropane binding of dopamine transporter. Mol Pharmacol 57:883–889
- Mortensen OV, Kristensen AS, Wiborg O (2001) Speciesscanning mutagenesis of the serotonin transporter reveals residues essential in selective, high-affinity recognition of antidepressants. J Neurochem 79:237–247
- Roubert C, Cox PJ, Bruss M et al (2001) Determination of residues in the norepinephrine transporter that are critical for tricyclic antidepressant affinity. J Biol Chem 276:8254–8260
- Lin Z, Wang W, Uhl GR (2000) Dopamine transporter tryptophan mutants highlight candidate dopamine- and cocaine-selective domains. Mol Pharmacol 58:1581–1592
- Singh SK, Yamashita A, Gouaux E (2007) Antidepressant binding site in a bacterial homologue of neurotransmitter transporters. Nature 448:952–956
- Zhou Z, Zhen J, Karpowich NK et al (2007) LeuT-desipramine structure reveals how antidepressants block neurotransmitter reuptake. Science 317:1390–1393
- Abagyan R, Totrov M, Kuznetsov DN (1994) ICM—a new method for protein modeling and design. Applications to docking

and structure prediction from the distorted native conformation. J Comp Chem 15:488–506

- 35. Abagyan R, Totrov M (1994) Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. J Mol Biol 235:983–1002
- Laskoswki RA, MacArthur MW, Moss DS et al (1993) PRO-CHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291
- 37. Hooft RW, Vriend G, Sander C et al (1996) Errors in protein structures. Nature 381:272
- Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519
- Heijne GV (1986) The distribution of positively charged residues in bacterial inner membrane proteins correlates with the transmembrane topology. EMBO J 5:3021–3027
- Wieman H, Tondel K, Anderssen E et al (2004) Homology-based modelling of targets for rational drug design. Mini Rev Med Chem 4:793–804
- Ward A, Reyes CL, Yu J et al (2007) Flexibility in the ABC transporter MsbA: alternating access with a twist. Proc Natl Acad Sci USA 104:19005–19010
- 42. Kaback HR, Wu J (1997) From membrane to molecule to the third amino acid from the left with a membrane transport protein. Q Rev Biophys 30:333–364